
Practical
Oracle Cloud
Infrastructure

Infrastructure as a Service, Autonomous
Database, Managed Kubernetes,
and Serverless
—
Michał Tomasz Jakóbczyk

Practical Oracle Cloud
Infrastructure

Infrastructure as a Service,
Autonomous Database, Managed

Kubernetes, and Serverless

Michał Tomasz Jakóbczyk

Practical Oracle Cloud Infrastructure: Infrastructure as a Service, Autonomous
Database, Managed Kubernetes, and Serverless

ISBN-13 (pbk): 978-1-4842-5505-6 ISBN-13 (electronic): 978-1-4842-5506-3
https://doi.org/10.1007/978-1-4842-5506-3

Copyright © 2020 by Michał Tomasz Jakóbczyk

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover image taken in Swiss mountains by Michał Jakóbczyk

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484255056. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Michał Tomasz Jakóbczyk
Warszawa, Poland

https://doi.org/10.1007/978-1-4842-5506-3

To my family, friends, and colleagues

v

About the Author ��� xi

About the Technical Reviewer ��� xiii

Acknowledgments ���xv

Introduction ���xvii

Table of Contents

Chapter 1: Introducing Oracle Cloud Infrastructure ��� 1

Cloud Computing Characteristics �� 2

Hardware and Virtual Resources ��� 2

Cloud Computing Definitions ��� 3

Provisioning ��� 4

Elasticity and Scalability �� 7

Delivery as a Service ��� 9

APIs�� 10

Core Cloud Capabilities ��� 15

Compute �� 15

Storage �� 18

Networking �� 22

Identity and Access Management ��� 24

Deployment Models �� 25

Service Models ��� 27

Costs ��� 30

Oracle Cloud Infrastructure ��� 32

Regions �� 33

Workloads �� 35

Services ��� 36

vi

Billings ��� 39

Support �� 41

SLA �� 43

Trial �� 45

Summary��� 47

Notes ��� 48

Chapter 2: Building Your First Cloud Application ��� 49

Planning the Infrastructure ��� 50

Cloud Account �� 50

Project Compartment��� 50

Application Design ��� 52

Cloud Infrastructure ��� 56

Service Limits �� 61

Provisioning the Infrastructure ��� 62

Compartment ��� 64

Virtual Cloud Network �� 66

Internet Gateway ��� 68

Route Table �� 69

Security List ��� 70

Subnet ��� 73

Compute Instance �� 75

Testing the Application �� 86

SSH Connection ��� 86

Waiting for cloud-init ��� 87

Open Ports ��� 89

API Test �� 89

Scaling Out �� 92

Custom Image ��� 92

Subnet in a Different AD �� 95

Second Compute Instance ��� 96

Load Balancer �� 103

Table of ConTenTs

vii

Cleanup ��� 115

Summary��� 116

Chapter 3: Automating Cloud Infrastructure �� 117

Cloud Management Plane ��� 119

Oracle Cloud Infrastructure API ��� 120

Securing API Calls�� 122

API Signing Key ��� 124

SDK ��� 129

Installation ��� 130

Configuration ��� 132

Using the SDK �� 134

CLI ��� 137

Installation ��� 138

Configuration ��� 139

Using the CLI ��� 144

Terraform �� 149

Infrastructure as Code ��� 150

Installation ��� 152

Configuration ��� 153

Using Terraform ��� 157

State �� 175

Best Practices ��� 176

Summary��� 178

Chapter 4: Cloud Security and Project Environments �� 179

Projects, Environments, and Systems ��� 179

Compartments �� 181

Users ��� 189

Groups and Policies �� 198

Groups ��� 198

Policy Statements �� 203

Policies �� 207

Table of ConTenTs

viii

Audit and Search ��� 213

Searching �� 213

Auditing ��� 222

Summary��� 224

Chapter 5: Data Storage in the Oracle Cloud ��� 225

Buckets and Objects ��� 225

Working with Objects �� 228

Basics �� 229

Object Name Prefixes �� 234

Listing Objects in Pages �� 238

Object Metadata �� 239

Concurrent Updates ��� 241

Programming Object Storage �� 246

Multipart Uploads �� 246

Instance Principals �� 255

Tagging Resources �� 256

Dynamic Groups �� 260

Accessing Storage from Instances �� 263

Public Access �� 275

Cleanup ��� 277

Summary��� 278

Chapter 6: Patterns for Compute and Networking �� 279

Virtual Networking �� 279

Private IPs �� 281

Public IPs ��� 283

Private Subnets, Bastion, and NAT��� 289

Security Rules ��� 300

VCN Peering ��� 304

Scaling Instances �� 308

Instance Pools and Autoscale �� 308

Scaling Instance Vertically Up ��� 326

Table of ConTenTs

ix

Immutable Infrastructure �� 343

Summary��� 346

Chapter 7: Autonomous Database �� 347

Relational Data Model ��� 347

Oracle Database �� 351

Autonomous Data Warehouse ��� 356

SQL Developer Web ��� 364

Loading Data to ADW �� 368

Database Credential �� 369

Star Schema �� 373

Database Monitoring ��� 390

Data Analytics ��� 394

Cleanup ��� 408

Summary��� 408

Chapter 8: Oracle Container Engine for Kubernetes ��� 409

Containers ��� 409

Containerize an Application ��� 415

Container Registry ��� 430

Container Management ��� 440

Container Orchestration �� 441

Kubernetes �� 445

Managed Cluster ��� 449

Connecting As Superuser �� 464

Sandbox Namespace ��� 470

Connecting As Developer ��� 471

Pods ��� 477

Deployments and Services �� 480

Cleanup ��� 485

Summary��� 486

Table of ConTenTs

x

Chapter 9: Cloud-Native Architecture ��� 487

Cloud Native �� 489

Serverless ��� 493

Developer VM��� 495

Fn Project �� 497

Oracle Functions �� 513

Events ��� 528

Functions and Object Storage ��� 529

Events As Function Triggers �� 539

CloudEvents ��� 541

Oracle Events ��� 543

Cleanup ��� 549

Summary��� 551

Index ��� 553

Table of ConTenTs

xi

About the Author

Michał Tomasz Jakóbczyk is a cloud integration architect

at Oracle Corporation and works in Europe. He consults

with and provides advice to clients on integration

architecture and cloud infrastructure. He holds a bachelor

of science in engineering in the field of decision support

systems – computer science from the Warsaw University of

Technology. He speaks Polish, English, and German.

xiii

About the Technical Reviewer

Michelle Malcher is a security architect for databases at Extreme Scale Solutions.

Her deep technical expertise in areas from database to security as well as her senior-

level contributions as a speaker, author, Oracle ACE director, and customer advisory

board participant have aided many corporations in the areas of architecture and risk

assessment, purchasing and installation, and ongoing systems oversight. She is on

the board of directors for FUEL, the Palo Alto Networks user community, and she

volunteers for the Independent Oracle Users Group (IOUG). Michelle has built out

teams for database security and data services and enjoys sharing knowledge about data

intelligence and providing secure and standardized database environments.

xv

Acknowledgments

First and foremost, I would like to thank

• Michelle Malcher, Łukasz Antoniak, Tomasz Sawiński, Piotr Kusiak,

and Igor Sawczuk for their feedback and technical reviews

• Wojciech Wcisło and his Oracle consulting team in Warsaw for

creating an incredible atmosphere at work

• Ben Lackey at Oracle for his support

• Jill Balzano, Jonathan Gennick, Kim Wimpsett, and Laura Berendson

at Apress for everything involved in making this book real

This book is a result of my dreams to unleash my creativity and share my valuable

technical knowledge and experience with other technology enthusiasts in the structured

form of a technology handbook. I am a great believer in the importance of a learning-

oriented mind-set, and I would like to say to everyone who contributed to that

throughout my entire life and career: thank you!

xvii

Introduction

Welcome to Practical Oracle Cloud Infrastructure. I have written this book to provide

readers with a fast-paced, hands-on introduction to the most important aspects of

Oracle Cloud Generation 2. This handbook is meant to guide you using a series of

practical exercises that will give you the opportunity to learn by doing. After having read

this book, you will have a broad understanding of various cloud infrastructure concepts.

Moreover, you will be able to build cloud-based applications that leverage different types

of cloud services available on Oracle Cloud. I am a great fan of automation applied to

cloud infrastructure provisioning, system configuration, and the software development

lifecycle. Throughout this book, you will learn to employ a large amount of automation

and apply an infrastructure-as-code approach.

 Who Is This Book For?
This book is meant for cloud architects, consultants, engineers, computer science, and

technology students, as well as anyone who would like to learn about infrastructure as a

service delivered on the Oracle public cloud. To fully benefit from the exercises described

in this book, you should have a working knowledge of Linux or the macOS shell, a basic

understanding of IP networking concepts, and some exposure to programming.

 How to Work with This Book?
This book is code-driven. While reading this book, you will see I am assuming that you

are using the code that accompanies this book. This is why you should clone the Git

repository that holds all the code snippets, source code, and configuration file templates.

You will find the relevant Git repository at these links:

https://github.com/mtjakobczyk/oci-book

www.apress.com/source-code

https://github.com/mtjakobczyk/oci-book
https://www.apress.com/source-code

xviii

The code snippets are meant to be executed in macOS (Terminal), Linux (Shell), or

Windows Subsystem for Linux. If you are on Windows, please use Windows Subsystem

for Linux or launch a virtual machine with a Linux guest system. The Git repository

is composed of a number of directories, one for every chapter. Inside each directory,

you will find a chapter-specific README.md file. These README.md files use convenient

Markdown notation and include all the code snippets needed to make it easier and faster

to work with the code by copying it straight to your terminal. Furthermore, if something

changes in Oracle Cloud, the code in the Git repository will be updated accordingly so

that you will be able to work with an updated version of the code snippets. Just make

sure you periodically check for updates and pull the latest versions. The majority of

application code in this book is written in Python. If you do not know Python, you should

still be fine, because the most important code pieces are explained.

I am aware that nowadays a small number of people read technical books from

the beginning to the end. Yet, I strongly recommend you work through this book in

an ordered manner, reading and more importantly doing hands-on exercises starting

from Chapter 1 and continuing chapter after chapter. If you just want to get some basic

understanding, read Chapter 1 and complete the exercises covered in Chapter 2. If you

are interested in automation, continue to Chapter 3. To fully benefit from the hands-on

exercises included in this book, it is recommended that you set up your environment as

described in Chapters 3 and 4 before moving on to subsequent chapters. This is because

the exercises from Chapters 5 to 9 assume that the environment configuration covered

in Chapters 3 and 4 is still in place. All in all, my advice is to read and work through this

book chapter after chapter.

 Cloud Account
To perform the exercises included in this book, you will need an Oracle Cloud account.

At the end of Chapter 1, you will learn how to subscribe to a new Trial cloud account that

allows you to work with Oracle Cloud for 30 days at no cost. If you want, you can work

using a paid account, but just be aware that some services will incur costs. I have created

the exercises for this book using mainly my personal, paid cloud account.

InTroduCTIon

xix

 Managing Change
Nowadays, cloud services are evolving at an incredible pace, sometimes introducing

breaking changes. This is especially important for the relatively new services such as

Oracle Kubernetes Engine and Oracle Functions that are covered in this book. If you

experience that something works in a different way than described, make sure you pull

the latest version from the GitHub repository associated with this book and read the

README.md file for a particular chapter.

InTroduCTIon

1
© Michał Tomasz Jakóbczyk 2020
M. T. Jakóbczyk, Practical Oracle Cloud Infrastructure, https://doi.org/10.1007/978-1-4842-5506-3_1

CHAPTER 1

Introducing Oracle Cloud
Infrastructure
Technology is constantly evolving and is now one of the foundations of our everyday

lives. Computerization, digitalization, and the Internet have brought us to the

information age we live in. Nowadays, nearly every kind of business requires information

technology to exist and grow. Software is employed to serve a diverse range of business,

technical, and industrial processes, while hardware is used to run the software, store

data, and provide interconnectivity.

During this information age, the way we use technology has gone through a

number of turning points. One of them was the emergence and spread of the open

source movement that sparked communities around the globe to build new tools,

platforms, and applications at a pace unseen before. The freedom in distribution and the

transparence of the source code made it possible to deliver solutions faster by creating

derivative works and reusing existing components. What was initially seen as part of

the hacker culture and a niche market was eventually adopted by enterprises and large

organizations.

The arrival of business-ready cloud computing was another turning point. This

time, the subject of change was the perception of seeing and using hardware and

software systems as a whole. This chapter will explain this statement step- by- step and

be your guide through the most important concepts associated with cloud computing.

Furthermore, it will introduce you to Oracle Cloud Infrastructure, which is Oracle’s

infrastructure-as-a-service (IaaS) public cloud platform that delivers compute,

storage, and networking capabilities. It also hosts various platform-as-a-service

(PaaS) capabilities such as a fully managed Oracle Autonomous Database, container

orchestration engine, serverless computing, and others.

2

 Cloud Computing Characteristics
Running a business nowadays involves process automation. A single business process

can consist of scheduled activities, user interactions, data transformations, external

system calls, and even machine control. It usually engages numerous computer

programs we know as software. Software runs on hardware, at least in theory.

 Hardware and Virtual Resources
Hardware, as opposed to software, takes physical space and requires proper cooling and

a reliable power supply. In the traditional model, small businesses place their backend

equipment in server rooms, usually on-site. For medium and larger companies, their

local server rooms are used as network connection points to remote data centers where

production backend systems operate. The organization still manages its own equipment

but rents space for servers, power supply capacity, and network resources (like public

IP addresses, network throughput, dedicated links) in a professional third- party data

center that also serves other customers. This is called a data center colocation model.

Alternatively, an organization can invest in a fully owned data center, which typically

incurs the biggest cost. All in all, the traditional model entails relatively large capital

expenses that include the money spent on purchasing and maintaining the fixed assets

like equipment.

What actually matters is not the hardware itself but the compute power, storage,

and networking resources that are available to applications. All in all, software needs to

process its business logic in an efficient way; persist its data persisted to reliable, failsafe

storage; and connect to any external systems it has to interact with. Usually, it does not

matter if the software is running on virtualized or dedicated physical hardware. As a

matter of fact, a number of unrelated computer programs can be executed on individual

virtual machines that are launched on the same physical rack server.

From a management point of view, it is much more convenient to see the hardware

entities such as CPUs, memory, or storage somehow decoupled from the physical

hardware, represented as virtual hardware resources that are pooled together and made

ready to be allocated to the compute instances used by a number of applications and

systems that belong to a diverse range of projects and different tenants (cloud accounts).

Figure 1-1 presents this concept using an illustration.

Chapter 1 IntroduCIng oraCle Cloud InfrastruCture

3

 Cloud Computing Definitions
Some people mistakenly assume cloud computing and the public cloud are the same.

They are not. You can apply a cloud computing approach with your own hardware

infrastructure. Let’s take a look at the two definitions I like the most.

The National Institute of Standards and Technology (NIST) has coined a definition

that, in my opinion, highlights the essence of cloud computing.

Cloud computing is a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications, and services) that
can be rapidly provisioned and released with minimal management
effort or service provider interaction. This cloud model is composed of
five essential characteristics, three service models, and four deployment
models.1

Gartner, a well-known research and advisory company, has proposed another

definition that points out two further characteristics (emphasis added).

Figure 1-1. Virtual resources and hardware

Chapter 1 IntroduCIng oraCle Cloud InfrastruCture

4

Gartner defines cloud computing as a style of computing in which scalable
and elastic IT-enabled capabilities are delivered as a service using
Internet technologies.2

The rapid provisioning of IT resources that are available in a shared pool is one

of the fundamental attributes of cloud computing. This rapid provisioning boosts the

productivity by shortening any unwanted waiting time, eliminates possible errors

through the repeatability of underlying automation, and eventually entails cost savings.

Resources that are no longer in use may return to a shared pool, which allows other

projects to reuse them, thereby optimizing the overall resource allocation. Elasticity,

provided by resource scalability, is a key factor to optimize the resource use. Moreover,

it can help to increase robustness by allowing computer systems to react to unexpected

failures and varying the performance footprint. Resources of closely related types,

such as compute, networking, different types of storage, and many more, are grouped

together and made available as web services. Figure 1-2 illustrates the key characteristics

of cloud computing.

Figure 1-2. Cloud computing key characteristics

The next sections will describe these characteristics in more detail. But first let’s take

a closer look at what the word provisioning actually means.

 Provisioning
The Oxford Dictionary defines the verb to provision as “the action of providing or

supplying something for use.” Well, the word action may sound a bit too granular.

In the real world, providing a resource is always associated with a process of some kind.

Chapter 1 IntroduCIng oraCle Cloud InfrastruCture

5

 Traditional Provisioning Process

For an existing data center site, an infrastructure provisioning process usually starts with

a request that gets reviewed and approved, eventually becoming an order. This initial

step is preceded by the relevant capacity planning effort to identify what equipment

and software are really needed as part of the data center expansion. If we have all the

requested hardware components and software licenses in stock, we are lucky. The order

fulfillment can begin. We need to fetch the hardware components; register each of

them, often including their associations in an assets catalog; and then install, configure,

connect together, and enable them for use.

Things can get slightly more complicated if we still have to purchase the equipment.

First, the buying itself may require a multilevel approval that takes even more time.

Second, the provisioning process additionally involves procurement activities. Unless

our company uses an automated procure-to-pay solution, all steps such as selecting the

supplier, verifying the contract against policies, placing an order, submitting accounting

invoices, and processing payments would involve a lot of lengthy human activities. All in

all, it costs money and can take a lot of time.

Imagine now that we are responsible for resources in a small data center that is used

by our company. What would happen if we were asked to launch a completely new

environment for one of the development teams as soon as possible? If we follow the

traditional approach, the long-lasting process would kick off. First, we kindly ask our

colleagues to conduct the capacity planning to assess their needs and fill the request that

would become subject to approval. As soon as the approvals have been collected, we

check if the equipment is in stock and spawn a procurement subprocess for the missing

components. Unless we are using a well-integrated procure- to- pay business software,

the procurement subprocess itself may take a lot of time before the final purchase order

gets fulfilled. Figure 1-3 uses a standard business process modeling notation (BPMN) to

outline the traditional provisioning process.

Chapter 1 IntroduCIng oraCle Cloud InfrastruCture

6

 Rapid Self-Provisioning Process

In the world of cloud computing, the word provisioning is often encountered as the state

of your virtual resource observed while your new resource instance is being launched.

The definition from NIST emphasizes rapid provisioning with minimal service provider

interaction. This is the key. Minimal service provider interaction means that there is no

need to submit a ticket and wait until the resources are semimanually set up for you by

a team of administrators. Instead, the process is fully automated, and as soon as you

trigger an instance launch, the order will be validated against your permissions and

quota, also known as service limits, and passed to the rapid provisioning engine. The

engine will use various profiles and templates to launch and configure the resources.

Figure 1-4 outlines the self-provisioning process.

Figure 1-3. Traditional provisioning process

Figure 1-4. Rapid self-provisioning

Chapter 1 IntroduCIng oraCle Cloud InfrastruCture

7

Actually, we could say that a scripted configuration is nothing new. It has been

standard for a few years now, gaining more popularity each year. For example, we can

pick Ansible and use its playbook-based agentless automation to install a software stack

on multiple servers parallelly. In this way, we are not only speeding things up but also

allowing the automation to perform the same task on a number of machines, decreasing

the risk of mistakes. This is how many administrators already achieve their daily tasks.

The more you automate, the less time you spend on repeatable tasks. The vast majority

of operators still limit the scope of their automation to their software stack rollouts.

Hardware seems to be continually handled rather manually. Well, you still need to plug

a cable into a switch or boot a new machine, don’t you? Rapid self-provisioning, on the

other hand, necessitates complete end- to- end automation for both the hardware and the

software components. Yet, hardware provisioning automation doesn’t seem easy. Even

though it is absolutely possible to use a remote bare-metal machine boot using Preboot

Execution Environment (PXE) booting, we rely nowadays more and more on virtualized

pools of resources. Virtualization makes rapid resource provisioning much easier.

 Elasticity and Scalability
An elastic object is able to return to its regular shape voluntarily, after it has been

stretched (or squeezed). Such an object is thus highly adaptable to the impact of

external circumstances. A web application can be considered highly adaptable or

elastic if it is able to handle unexpected peaks of inbound traffic requests. A backend

data warehousing extract-transform-load (ETL) engine is reckoned to be very elastic or

adaptable if it is capable of staging sudden, extraordinarily large volumes of incoming

data loads.

Chapter 1 IntroduCIng oraCle Cloud InfrastruCture

8

Computer system elasticity can be achieved through scalability of the underlying

resources. For a modern, stateless web application, the number of containers that

expose the API and encapsulate its request processing implementation logic could

be increased, even by launching them on additional virtual machines. This action

would enlarge the overall compute capacity of a cluster. In other words, we would have

more application containers running on a larger set of host instances of the same size

added to the cluster to increase the overall system throughput. This is called horizontal

scaling. In the case of a backend ETL engine, the overall capacity of the attached block

storage units for the staging area could be upsized. Put differently, we would add more

hardware resources such as block volumes to each machine, keeping the number of

machines unaltered. This is called vertical scaling. Figure 1-5 presents the two types of

resource scaling.

Figure 1-5. Vertical and horizontal scalability

If we consider only software architecture, vertical scaling may be often seen as

easier and more appealing at first glance. If you move an application to a more powerful

machine with a larger number of CPUs or simply extend the memory on the existing

application host, the software would see new the hardware resources immediately or

after a quick reboot. In most cases, there is no need to reconfigure the application. This

approach has a major pain point, though. You cannot scale a single machine endlessly

up. There will always be a limit in terms of the hardware availability because physical

machines and even virtualized resource pools do have limits.

Horizontal scaling may indeed seem unlimited. In theory, we could expand a cluster

by adding new machines virtually infinitely. This really crucial advantage of horizontal

scaling comes at a cost of the required cluster management. Distributed computer

systems have to be specifically designed in a way that it is possible to scale them out.

They must be able to handle synchronization and replication across the machines that

act as cluster nodes.

Chapter 1 IntroduCIng oraCle Cloud InfrastruCture

9

A computer system is truly elastic if the resources it uses are dynamically allocated

and deallocated in response to the changing demand so that its performance always

remains constant. In practice, such autoscaling is possible only with horizontal scaling.

 Delivery as a Service
If you look at the definition from Gartner, you will see that the IT capabilities are said to

be delivered as a service. To understand what that means and how it fits into the rapid

provisioning of resources available in shared pools, let’s start by looking at the concept of

a shared pool.

Purchasing goods like computer hardware is related to capital expenses. If a project

team requires a new server, they could buy one, in theory. Such an investment incurs an

expense that has to be considered in the project budget and properly accounted for. This

is not a flexible approach, however. By owning the asset, a project team has to maintain

the lifecycle of the asset up to its decommissioning. A highly specialized task force team

usually has neither people nor time to do this.

Sometimes, you need a set of additional machines just to perform a specific task

that is limited in time. For example, you may have to carry out load-and-performance

or acceptance tests in a dedicated environment for only a few weeks in every quarter.

If you purchase the equipment, it might remain unused for the rest of the time, unless

you are somehow able to return it to a resource pool available to other project teams. All

resources in a shared pool could be used in a measured way only when really needed,

thus minimizing their idle time. The project team would no longer own any hardware

but rather have their cost centers charged based on the measured usage of the resources.

From a project team perspective, this is nothing but a service that entails operational

expenses. Furthermore, no hardware ownership results in no need for, or easier, asset

management.

Chapter 1 IntroduCIng oraCle Cloud InfrastruCture

10

The hardware, which is used to back up a shared pool of virtual cloud resources, still

incurs costs, usually for the one who is responsible for maintaining it. Such costs are

eventually charged to the project teams that have used the virtual resources. To keep the

cost split based on the real usage of each individual cloud consumer, the virtual resource

consumption must be measured.

For a large organization, employing self-service as a core part of its processes can

save a lot of effort and eliminate the unneeded waiting time. It boosts the productivity

of project teams and individuals who are empowered to take matters into their own

hands. A project team would be able to self-provision the required resources of various

types (compute, storage, network, etc.) on their own, scale them out in an automated

way up to the point in which the system performance meets the requirements, and

eventually return them to the resource pool as soon as they are no longer in use. Self-

service is possible only when the resource pool management system offers an interface

to supervise the resources. The project teams, or service consumers, provision, manage,

and monitor the resources through an application programming interface (API).

 APIs
In the early days, an API was usually understood as a collection of programming

language functions encapsulated for reuse in a library. Programmers would call these

functions in the code using function headers. Computer program binaries would

then link to a dynamic library (.dll or .so) to execute the implementations of the

API functions. With computer systems becoming more and more distributed and

interconnected, APIs gained another meaning, this time related to remote procedure

calls and web services. Two production-grade API styles for web services are Simple

Object Access Protocol (SOAP) and Representational State Transfer (REST). Let’s briefly

explore them.

 SOAP APIs

The Simple Object Access Protocol is a mature standard that defines a role-based,

multinode distributed processing model with an initial sender, optional intermediaries,

and an ultimate receiver. Message exchange operations and their payload structure are

defined in a contract. The payload is usually structured in a strict-schema XML format,

ensuring that the format of a message is compliant with the contract. A SOAP-based

web service contract is defined in a Web Services Description Language (WSDL) file.

Chapter 1 IntroduCIng oraCle Cloud InfrastruCture

11

The current version (SOAP 1.2) was standardized in 2007 by W3C in a document called

a W3C Recommendation. An initial draft of the protocol was submitted in 2000 as SOAP

1.1 in a W3C Note for discussion. In SOAP, the focus is on custom-defined operations

and strict-schema XML data interchange. APIs are designed using a well-defined WSDL

format. SOAP is designed in a transport-agnostic way. Two most dominant transports are

HTTP and Java Message Service (JMS). Listing 1-1 shows a simplified example of a SOAP

request sent over HTTP transport.

Listing 1-1. Sample SOAP Request in HTTP

POST /crm/shipmentService HTTP/1.1

Host: 192.168.10.15:8081

Content-Type: text/xml;charset=UTF-8

SOAPAction: "http://example.com/crm/shipments/search"

<?xml version='1.0' ?>

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">

 <env:Header />

<env:Body>

 <p:SearchShipments xmlns:p="http://example.com/crm/shipments">

 <p:shipmentOrigin>WAW</p:shipmentOrigin>

 <p:shipmentDestination>FRA</p:shipmentDestination>

 <p:postingDateFrom>2018-06-25</p:postingDateFrom>

 <p:postingDateTo>2018-06-28</p:postingDateTo>

 </p:SearchShipments>

 </env:Body>

</env:Envelope>

 REST APIs

REST stands for Representational State Transfer and has been present as a computer

science term since 2000. It was introduced by Roy Fiedling in his PhD dissertation on

network-based software architectures. Roy writes the following:

The key abstraction of information in REST is a resource. Any information
that can be named can be a resource: a document or image, a temporal
service (e.g. “today’s weather in Los Angeles”), a collection of other resources,
a non-virtual object (e.g. a person), and so on.4

Chapter 1 IntroduCIng oraCle Cloud InfrastruCture

12

Contemporary RESTful services focus on resource lifecycle events (creation, update,

deletion, and read access) represented by the corresponding HTTP methods (PUT, POST,

DELETE, GET). The most natural resources are business entities such as shipment, invoice,

or sales leads. Yet, business processes without any entity-like meaning, such as order

fulfillment or timesheet submission or even nonfunctional processes like an advanced

search, can also be represented as REST resources. In this way, we can trigger (usually with

HTTP POST) and track (usually with HTTP GET) these processes. An interesting thing

is that with REST, we usually avoid the word contract and simply talk about API design.

Contrary to SOAP and its WSDL contract, there has been more than one way to define

a REST API. The initial lack of an official standard has encouraged a kind of free-market

competition to find the most popular way to design an API. One of the first, somehow

indirect, attempts to introduce a standard for REST API design was Web Application

Description Language (WADL), with a specification5 being submitted to the W3C in 2009

by Sun Microsystems. Two years later, the Swagger suite was born and together with RAML

and API Blueprint dominated the API design scene. In 2015, the OpenAPI Initiative was

born at the Linux Foundation with a goal to create and maintain the ultimate API design

standard. This standard is known as OpenAPI6 and is based on Swagger.

The most popular payload format used for REST APIs is JavaScript Object Notation

(JSON), but there is nothing against using XML or plain text in the body of either a

request or a response. For some resource lifecycle events, it is reasonable to rely on

HTTP status codes with no payload at all. Listing 1-2 presents an example of a call to a

nonfunctional process resource responsible for an advanced search. The payload carries

search criteria serialized in JSON format. The URL defines the resource over which the

search operation is performed.

Listing 1-2. Sample REST Call

POST /crm/search/shipments HTTP/1.1

Host: 192.168.10.15:8081

Content-Type: application/json;charset=UTF-8

Accept: application/json

{

 "route": {

 "origin":"WAW",

 "destination":"FRA"

 },

Chapter 1 IntroduCIng oraCle Cloud InfrastruCture

13

 "postingPeriod": {

 "from": "2018-06-25",

 "to": "2018-06-28"

 }

}

Well-structured, contract-driven, enterprise-oriented, but somehow overweight

SOAP APIs have been gradually replaced by lightweight and pretty natural REST

APIs. It is true that the majority of use cases can be fulfilled with REST APIs at a much

lower cost than SOAP. Furthermore, REST is definitely preferred by new projects for

small and medium companies, software-as-a-service APIs, IoT edge, and large-scale

container- driven backend systems. Various API gateways as well as API management

platforms position REST as the default style in the context of API management. These

suites usually still support SOAP, simply because it is widely deployed and will stay

in use across enterprises for some time, especially in the traditional service-oriented

architecture deployments with Enterprise Service Bus (ESB) in the backend. The

future of API evolution doesn’t stop with REST APIs, however. It is worth observing

GraphQL, which, you could say, builds on REST and brings into life the concept of a

query-oriented API that combines flexibility with a light footprint. Figure 1-6 presents

the evolution of APIs.

Figure 1-6. The evolution of APIs

A slightly different evolutionary direction is taken by gRPC. By design, this remote

procedure call (RPC) framework is meant to be machine-readable and programming-

language neutral. You define APIs typically using protocol buffers that allow you to

specify both services and data structures in a more compact way than using WSDL/XSD

in SOAP. There are many code generators that take these definitions and generate code

stubs for clients and servers in various programming languages. gRPC is a good fit for

high-performance messaging, thanks to a compact binary format used on the wire and

Chapter 1 IntroduCIng oraCle Cloud InfrastruCture

14

the HTTP/2 feature set. The adoption is still in a relatively early phase and focuses

on internal APIs, but we may get to the point where selected public-facing APIs are

gradually moved to gRPC. This may begin with the APIs involved with streaming or low-

power IoT devices.

 Cloud Management Plane

Why do APIs matter? If we want to apply cloud computing to our own hardware, we need a

system that manages pools of resources, enables rapid self-provisioning, and permits virtual

machines to scale horizontally. Such a system, let’s call it a cloud management plane, must

offer an API that can be used by the project teams on a self-service basis. The REST style is

a perfect fit for cloud computing because the cloud capabilities, which we will discuss in

the next section, can be easily seen as first-class REST resources. When you manage cloud

resources, direct API calls are rarely done. Usually, the API is used through a web console,

software development kits (SDKs) for various languages, a command-line interface, or

an infrastructure-as-code software such as Terraform. In all these cases, API calls are

constructed and sent in the background. You only provide the required input. Figure 1-7

presents an overview of the various ways to consume the Oracle Cloud Infrastructure (OCI)

API. You will learn more about this in Chapter 3.

Figure 1-7. Cloud management plane API ecosystem

Until now, looking at my two favorite cloud computing definitions, we’ve explored

the key cloud computing characteristics. We analyzed how rapid self-provisioning differs

from the traditional provisioning model. Then, we briefly discussed how elasticity can be

delivered through scalability. Finally, we learned about the vital role the contemporary

APIs have in delivering cloud resources as services. Let’s explore now the four core IT

capabilities every infrastructure cloud has to deliver.

Chapter 1 IntroduCIng oraCle Cloud InfrastruCture

15

 Core Cloud Capabilities
In the cloud, you build solutions using virtual cloud resources that resemble the hardware

equipment that provides a physical platform for the software to run. There are different

types of cloud resources. Some cloud resource types are intended to be used strictly

together with other types of cloud resources. For example, a routing rules table is a cloud

resource type that always exists within a virtual cloud network cloud resource. Together

with a few other cloud resource types, they are collectively seen as part of the same

cloud capability, which is a term you would more often see referenced as an individual

cloud service. The way individual cloud resource types are grouped together depends

on choices made by a particular cloud provider. Usually, you will see four core cloud

capabilities typically referenced as cloud services, no matter how global or niche a cloud

provider is.

• Compute

• Networking

• Storage

• Identity and access management

These four core cloud computing capabilities provide resources that are often used,

in the background, as building blocks to deliver further infrastructure and platform

capabilities such as the following:

• Container orchestration

• Managed databases

• Serverless computing

We will now get a glimpse of the four core cloud computing capabilities.

 Compute
Executing programs and processing information are often seen as computational

activities and considered two of the most important tasks for the solutions running on

contemporary cloud computing platforms. One way to perform these activities is to

run software on virtual hosts, also known as compute instances. You can think of these

instances as if they were computer machines running in data centers that are managed

Chapter 1 IntroduCIng oraCle Cloud InfrastruCture

16

by a particular cloud provider. You provision the instances either individually or grouped

together using instance pools. You are able to establish a Secure Shell (SSH) or a Remote

Desktop (RDP) connection to manage them or the software that they host remotely.

The vast majority of compute instances in the cloud are virtual machines (VMs).

Multiple VMs that belong to different cloud tenancies (accounts) may be running

on the same physical server. This is called multitenancy. Multiple tenants eventually

share the same physical equipment, even not being aware of that, to leverage sharing

economy principles. Using virtual machines makes it much easier for cloud providers

to offer more granular compute resources managed in shared pools to their customers.

More demanding customers who need to perform high-performance computing

(HPC) or use systems that work better with no virtualization usually prefer to deploy

their solutions on dedicated hosts with no multitenancy and no hypervisor involved.

They then opt for bare-metal (BM) compute instances that do not use any hypervisor

and are dedicated to a single cloud account at the time. What needs to be said at this

stage is that not every cloud provider supports bare-metal machines. Oracle Cloud

Infrastructure does. Figure 1-8 illustrates the differences between virtual machines and

bare-metal machines.

Figure 1-8. Bare-metal machine vs. virtual machines

Before provisioning an instance, no matter if it is going to be a virtual or a bare-metal

machine, there are two fundamental choices you need to make. The initial configuration

of a compute instance is typically done through the selection of the following:

• Hardware profile

• Preinstalled software

Chapter 1 IntroduCIng oraCle Cloud InfrastruCture

17

A hardware configuration profile defines elements that are available for the newly

provisioned compute instance such as the number of CPU cores, the memory size, or the

disk space on the primary block storage device where the base software gets installed.

The choice of a profile will decide whether the instance is going to run on a virtual

machine or a dedicated bare-metal host. Every cloud provider usually offers a broad

range of hardware profiles you can choose from for the instances you are planning to

launch. Depending on the cloud provider, you can encounter different names for the

hardware configuration profiles. Some of them are as follows:

• Shape

• Flavor

• Instance type

• Size

Oracle Cloud Infrastructure compute uses shape as the name of a hardware profile

for a compute instance.

The preinstalled software stack is generally called an image. First, it must include an

operating system. Cloud providers tend to offer just a few operating system distributions,

but these options are usually enough to satisfy your needs. Some large-scale cloud

providers may even offer their own, branded versions of Linux based on one of the

popular distributions. Deploying your cloud solutions on compute instances that work

on a branded, vendor-provided operating system distribution will often let you benefit

from professional support for operating system questions and issues. To apply the reuse

principle to your architecture and infrastructure scripts, you will probably work with

the images that ship with some additional preinstalled software on top of an operating

system. For example, you may launch your instance using an image that already contains

a preinstalled HTTP server, CI/CD tooling, an application runtime of your choice, or

even a ready-to-launch application node. Where can you get these kinds of images from?

One option is to obtain them directly from your cloud provider or the partner companies

that build and maintain such images. Typically, some of the images that originate from

the two sources I’ve just mentioned are offered in a location called a cloud marketplace

that is maintained by your provider. Another option is to build custom images completely

on your own. This approach gives you control over how an image is built. You can create

a custom image by doing it manually, as a one-time activity, or by automating the entire

process. To do the latter, you would write a script that launches an interim compute

Chapter 1 IntroduCIng oraCle Cloud InfrastruCture

18

instance using a particular operating system image, installs the software of your choice,

creates a new custom image based on the compute instance, and finally terminates

the interim instance. This task can be performed using an open source tool called

HashiCorp Packer using its Oracle Builder (oracle-oci) component. This initial effort will

pay off, especially if you follow the strategy that assumes to always reprovision compute

instances using the newest software versions instead of incrementally applying patches

on the instances that have been initially built using an older version of the software.

In the context of compute capability, horizontal scaling typically means changing

the number of compute instances as the demand for computing power grows or shrinks.

To be more precise, the entire scaling process is more focused on the application nodes

that are hosted on these instances. Because of the similarities between the application

nodes, the compute instances will often be based on the same custom image with

the preinstalled software and the same set of the startup scripts. The combination of

an image and startup scripts followed with a few other provisioning choices over the

instance shape (hardware profile) or the SSH keys can be materialized in the form of

another cloud resource called an instance configuration. This type of a resource can be

then used to launch and manage scalable groups of instances called instance pools.

As you can see, the compute capability is meant to provide the resources that would

let you run your software in a similar way to how you do it using physical computers. An

aspect that is closely related to data processing is storing that data. We are now going to

discuss it.

 Storage
Without the possibility to persist both the inputs and the results, any computational

processing would make little sense. Various types of data follow different lifecycles that

eventually result in nonidentical requirements. What follows is the variety of different

cloud resource types that are used to fulfill diverse storage goals. If we skip the higher-

level database storage for the moment, we can talk about storage capability. We usually

break apart this capability into three groups of storage resource types.

• Object storage

• Block storage

• File storage

Chapter 1 IntroduCIng oraCle Cloud InfrastruCture

19

Object storage is meant to store any amount of data of any type providing

redundancy, integrity, data encryption, and various types of access. Data entities such

as files are seen as individual objects grouped together in a folder-like hierarchy that

are called buckets. Access policies guard the stored objects and decide who can access

them and what actions are allowed. Data is encrypted at rest, and redundant copies are

distributed across data centers within a selected region. We often differentiate two types

of object storage based on the access frequency.

• Standard object storage that offers an immediate, fast access

to the data

• Archive storage that offers much cheaper way to preserve data

at the cost of having to wait a few hours or more to be able to

retrieve the data

Some lifecycle aspects such as moving these objects that are rarely accessed to the

archive storage can be automated through the use of lifecycle policies. What kind of

data do you typically persist in object storage buckets? This type of data can range from

application logs, through database backups or data that is stored as part of your content

delivery network, to large archives of business data that must be safely stored for a longer

period of time to comply with the regulations.

Block storage, contrary to the object storage, plays a supplementary role in the

context of the compute capability, even though we classify the resources such as block

volumes, volume groups, or backup polices as belonging to the storage capability.

The primary type of a cloud resource here is a block volume. You can think of it as a

nonvolatile memory disk that is a subject of its own lifecycle, but it makes sense to use it

only with compute instances such as virtual or bare-metal machines. Actually, nothing

spectacular takes place while provisioning a new block volume. The life of a new block

volume begins as soon as you attach it to a compute instance, create a filesystem, and

mount it. From this moment, you can use the volume as an additional disk for your

compute instance. As a matter of fact, depending on the applications you host on the

instance, you may store all your application data on this volume instead of using the

boot volume that every compute instance has from the beginning. Of course, if you

architect a new cloud solution, you will probably choose another type of cloud resources

such as object storage or managed database for storing the application data. Yet, you will

still discover a lot of different types of applications, especially traditional ones, that will

benefit more from using an attachable block volume.

Chapter 1 IntroduCIng oraCle Cloud InfrastruCture

20

Going further, we can distinguish two ways a block storage volume can be attached

to a compute instance.

• Remote attachment over an IP network

• Direct attachment to the physical machine

The interconnectivity between servers and remotely attached volumes is often

handled with the use of the Internet Small Computer Systems Interface (iSCSI) protocol

standardized in RFC7143.

The Small Computer System Interface (SCSI) is a popular family of proto-
cols for communicating with I/O devices, especially storage devices. (…)
The iSCSI protocol (…) describes a means of transporting SCSI packets over
TCP/IP.7

The storage volumes that are directly attached to physical machines benefit

immensely from the fact that disk operations do not involve any network

communication. In combination with flash-based solid-state drive (SSD) devices

and the Nonvolatile Memory Express (NVMe) protocol, which enhances block access

concurrency with multiple I/O command queues, we receive amazing performance

measured in input/output operations per second (IOPS). Nonetheless, this setup

imposes a limit on how many storage volumes can be attached to an instance.

Based on the usage pattern, some block volumes, especially those used as persistent

data stores, should be regularly backed up. Point-in-time backups are often called

snapshots. These intermediate states can be either full or incremental. The latter tracks

changes from the last backup or volume creation. Policies can be used to drive an

automated, scheduled creation of volume backups. Snapshots taken on unmounted

volumes are called cold backups. In this case, the volume cannot be used during an

ongoing backup operation. Taking a snapshot of a volume that remains in use is called a

warm backup. In most cases, block volume backups are persisted to highly available object

storage. What can you do with an archived snapshot? Most often, there are a few options

such as restoring the volume and cloning to or moving to a different cloud region.

Earlier in this chapter, we touched upon the meaning and the role of vertical and

horizontal scaling. If you consider vertical scaling, you will discover two patterns that

apply to block volumes. First, you should be able to scale a block volume up vertically

by increasing its size. Second, storing all application data on remotely attached block

volumes makes it relatively easy to replace the compute instance with a new one that

Chapter 1 IntroduCIng oraCle Cloud InfrastruCture

21

uses a more powerful shape that has more CPUs or memory, because you just need to

reattach the volume to the new instance. This operation can be thought of as scaling a

compute instance vertically.

Finally, I would like to touch on the fact that a block volume can be optionally

attached as read-only. This possibility is pretty handy if you would like to attach a volume

just to browse through the filesystem, making sure that nothing gets accidentally written.

While a block storage device is typically meant to be attached to a single compute

instance at a time, file storage is designed to enable file-oriented data exchange between

multiple compute instances. It may be especially useful when these traditional systems

leverage active-passive high availability that is built upon a file-based shared state. The

shared file storage capability can be implemented using the Network File System (NFS)

protocol that was introduced by Sun Microsystems in 1989 in RFC1094.

The Sun Network Filesystem (NFS) protocol provides transparent remote
access to shared files across networks. The NFS protocol is designed to be
portable across different machines, operating systems, network architec-
tures, and transport protocols. (…) NFS assumes a file system that is hierar-
chical, with directories as all but the bottom level of files.8

Since its introduction, the protocol has evolved from version 3 (RFC1813 in 1995) to

version 4 (RFC7530 in 2015). Alternatively, some providers use the Common Internet

File Service (CIFS) successor, namely, the Server Message Block (SMB) protocol, to

deliver the same shared file storage capability.

From the user’s point of view, a shared filesystem is mounted in a similar way as

a filesystem present on a block volume. Things are completely different under the

hood, and, depending on the chosen protocol, we may encounter some limitations or

experience an increased complexity. Designing solutions based on shared filesystems

often raises concerns about correct permission checking and concurrent file access. A

lot depends on the operating system and network protocol that are in use. For example,

Network File System 4 (NFS4) introduces native file locking, while an NFS3- based

solution has to rely on an additional network lock manager.

While designing new cloud-based solutions or planning lift-and-shift migrations of

the existing traditional systems from their on-premise environments to the cloud, you

will probably employ a mixture of the three storage types we’ve outlined in this section.

After having discussed compute and storage capabilities, we’ll move to the third core

cloud computing capability, which provides the virtual networking resources.

Chapter 1 IntroduCIng oraCle Cloud InfrastruCture

22

 Networking
In a multitier or distributed architecture, the software solutions are often composed of

multiple application nodes of different kinds that collaborate with the other nodes in a

variety of ways such as the following:

• Exposing their services through web interfaces also known as APIs

• Remotely consuming the functionalities provided by other services

• Maintaining connections to other nodes that compose the cluster

• Accessing external dependencies such as the database or message broker

Cloud resources used to deliver virtual networking such as networks, subnets, route

tables, security rules, or different types of gateways may seem conceptually similar to

the building blocks of traditional, hardware-based networks. Yet, they are radically

simplified in the way you configure them. Software-defined networking (SDN) plays a

significant role in cloud computing. Cloud infrastructure can be seen as an SDN- enabled

infrastructure that lets you create and terminate your isolated virtual overlay networks

called virtual cloud networks (VCNs), subdivide them into subnets, and use them to roll

out various networking patterns applied for your compute instances and other cloud

resources. These are the cloud resources seen as part of the networking capability:

• Virtual cloud networks and their subnets

• Reserved public IP addresses

• Security lists and security rules

• Various types of gateways

• Route tables and route rules

• Load balancers

• Virtual devices used to deliver VPN capabilities

• DNS zones

• Web Application Firewall (WAF) policies

Carefully planning your virtual networking is a crucial part of delivering a robust

security model for your cloud infrastructure and, likewise, securing your cloud-based

solutions. Usually, the design process begins with creating a virtual cloud network and

Chapter 1 IntroduCIng oraCle Cloud InfrastruCture

23

assigning a range of private IP addresses to be used within that network. Typically, a

single cloud account may contain multiple VCNs, some of them fully isolated, while the

others are interconnected with each other. To keep your infrastructure well-organized,

you will provision the compute instances inside another type of cloud resource called

VCN subnets. VCN subnets are basically a product of a logical subdivision done on

a particular virtual cloud network. Every compute instance you provision has to be

assigned to one or more subnets through a cloud resource called a virtual network

interface card (vNIC). A vNIC attached to a public subnet can have a public IP address

assigned and, in this way, be reachable from the Internet. Cloud providers own pools

of public IP addresses. Typically, the compute instances in public subnets can use the

public IP addresses that are dynamically assigned from these pools. When a compute

instance terminates, the public IP address used by that instance will be returned to

the pool and can be later attached to a completely different compute instance, even

one owned by another cloud customer. If you need more control over the public IP

addresses, you may benefit from a cloud resource called a reserved public IP address.

A reserved address always remains allocated for your cloud account, no matter if it

is assigned to an instance or not, and you are allowed to reassign it between your

instances. A subnet designated as a private subnet prohibits the instances within from

having public IP addresses attached. Security lists store security rules that add a layer of

a software- defined firewall that is enforced before the packets reach compute instances.

What these security rules basically do is verify whether the traffic for given IP addresses

and ports is indeed allowed to pass through. Route rules, on the other hand, are used to

properly direct the VCN outbound traffic and allow the packets to reach their next hop,

which usually is some kind of gateway such as Internet, service, or peering gateway. The

right combination of various gateways, route rules, security rules, and private subnets

will let you tightly supervise the network and allow only the expected traffic from and to

these subnets. Load balancers are used to evenly distribute the incoming traffic to the

instances grouped in the so-called backend sets. They let you introduce high availability

for fault tolerance to your infrastructure or scale the application cluster out to achieve

an increased request processing throughput. Some cloud solutions may require access

to the systems and data available in your traditional on-premise network. To connect

your virtual cloud network with a private network inside your data center, you can either

use a IPSec VPN, which tunnels the traffic over public Internet, or leverage a dedicated

private connection, which in Oracle Cloud is called FastConnect. In the latter case,

your on-premise data center will be either connected to a particular Oracle Cloud data

Chapter 1 IntroduCIng oraCle Cloud InfrastruCture

24

center directly or connected via one of the nearest FastConnect Connectivity Partners

that maintains a physical connection to the Oracle Cloud data centers. In both cases,

whether IPSec VPN or FastConnect, you will have to create a cloud resource called a

dynamic routing gateway (DRG), attach it to a VCN of your choice, and alter the VCN

route table by creating a new route. The route rule will set the DRG as the destination for

the outbound traffic which is addressed to the IP range used in your on-premise network

segment. DNS zones let you maintain the web domains you own in Oracle Cloud DNS

servers and manage the domain zones in detail, for example, by creating custom DNS

records. To complete your cloud networking toolkit, Web Application Firewall (WAF) can

be leveraged to protect your Internet-facing application endpoints from malicious and

unwanted inbound traffic. WAF has more than 200 predefined rules that just need to be

optionally configured and enabled. You redirect the domain record you manage in DNS

to the WAF endpoint. If the traffic is compliant with the WAF policies that are enabled for

the particular endpoint, the traffic is let through to reach the application endpoint.

Cloud resources are the subject of various management actions that should be

performed only by authenticated and authorized users. This leads us to the next section

to learn about the security topics collectively addressed by the fourth cloud computing

capability.

 Identity and Access Management
Identity and access management refers to a set of tools and principles that let you define

and govern who can access and manage your cloud tenancy mainly by provisioning,

changing, and terminating the cloud resources. Issuing a cloud management plane API

call or using a management console can be done only by a successfully authenticated

user. Usually, cloud providers implement two types of cloud users.

• Locally defined

• Retrieved from an external identity provider

Smaller organizations and startups will probably use locally defined users, while

large organizations that already maintain their user hierarchy in an identity provider

of some kind would rather federate their tenancy with this provider. What is an identity

provider (IdP)? It is a system that stores and manages the lifecycle of human users,

system users, and groups of users. Furthermore, an IdP usually offers authentication

services that can be consumed by other systems and their IAM services. Federating

Chapter 1 IntroduCIng oraCle Cloud InfrastruCture

25

your cloud tenancy with an external identity provider means that you are going to reuse

the identity data that is already present in the IdP. To keep it simple, the users defined

in the IdP will be recognized by your cloud tenancy IAM. Users alone can actually do

very little, unless they are assigned to the proper groups. Authorization, which is the

function that verifies what kind of actions a particular user is allowed to conduct over

certain cloud resources, is enforced through policies. A policy decides which group

is allowed to perform which kind of actions over a set of cloud resources either in the

entire tenancy or in an individual compartment. Compartments are unique to Oracle

Cloud Infrastructure and let you isolate different cloud resources that exist in your cloud

tenancy. In this way, a single cloud account can be used to host a number of completely

independent and unrelated projects. OCI lets you create hierarchies of compartments.

Chapter 4 will cover the compartments in more detail.

When you design a new cloud-based solution or rearchitect an existing system

before moving it to the cloud, you may decide that some applications hosted on selected

compute instances must be allowed to issue API calls to perform particular tasks over

other cloud resources as well. This can be achieved by creating policies for the dynamic

groups that gather together dynamically included instance principals based on matching

rules. An instance principal is basically an identity of a compute instance.

In this section, we discussed the four core cloud computing capabilities and the cloud

resources they usually incorporate. If you recall the first cloud computing definition I’ve

referenced at the beginning of this chapter, you may wonder what the four deployment

models are. We are going to look at them in the next section.

 Deployment Models
I’ve already said that some people mistakenly assume that cloud computing and public

cloud are the same. Yet, it is the public cloud that the general public, press, and IT

professionals most often refer to in their discussions about cloud computing. What does

the term actually mean? Well, let’s take a look at the three leading deployment models.

• Private cloud

• Public cloud

• Hybrid cloud

Chapter 1 IntroduCIng oraCle Cloud InfrastruCture

26

The first one is pretty straightforward. If you and your fellow admins reorganize and

fully automate the way you serve the virtualized hardware resources that are maintained

in shared pools and available as self-service services to different project teams within your

organization, then you’ve built a private cloud and probably transformed the IT culture

of your organization as well. Congratulations. This is a cumbersome and expensive

task, though, because you need to rearchitect your hardware and virtualization layer,

purchase or build your own cloud control plane, and hire even more admins to keep an

eye on all these resources and services that have become your private cloud. Another

major drawback is that your organization still owns all this equipment, which results

in increased capital expenses. Well, not everyone is eager to accept these significant

expenses that are related to the lifecycle of the hardware equipment, especially in a

nontechnology business. Investing money and maintaining a private cloud could be

satisfactory for a sizable, mature, and technology- focused enterprise or a public-sector

organization. The great majority of organizations prefer to avoid owning too much, if any,

hardware. Instead, they opt for outsourcing all costs related to any kind of data center

maintenance, if possible.

A public cloud delivers various computing capabilities as services much in the

same fashion as a private cloud does inside an organization’s business network. The

difference is in the audience or, to put it properly, in who are the consumers of the cloud

service a public cloud offers. A typical public cloud provider maintains data centers,

either own or collocated, in one or more geographical locations across the globe; owns

the hardware; and is responsible for the overall maintenance, operations, security, and

service availability. The service consumers, which could be as diverse as individuals,

companies, nonprofit organizations, startups, or even government agencies, use secure

APIs to rapidly self-provision, scale, and manage the cloud resources that eventually use

hardware located in one or more data centers owned by the given public cloud provider.

Providing an accurate definition of hybrid cloud won’t be as easy as it was with

the previous two deployment models. To keep things simple, the most dominant

understanding of a hybrid cloud is the use of one or more public cloud providers that are

well-integrated and interconnected with a private cloud run on-premise. I am not going

to elaborate on hybrid cloud architectures in this book because the topic itself is still

somehow fluid in the way it is seen by the industry and much more complex than it may

look at first glance.

Chapter 1 IntroduCIng oraCle Cloud InfrastruCture

27

Large-footprint public cloud consumption raises important questions about the

risk of a costly vendor-lock with just one public cloud provider. If all our solutions are

exclusively architected and based on a single public cloud, we are susceptible to a

potential increase in service fees with no contingency plan. There are other perils to

consider in the context of vendor-lock such as the theoretical scenario of a sudden,

short- notice service deprecation that may force a rapid and expensive migration

project. These concerns lead to the idea of a multicloud pattern applied to public cloud

consumption. This pattern assumes that we subscribe to infrastructure and platform

services provided by more than one public cloud provider. Furthermore, we design

applications and workloads in such a way that they can be run in any of our cloud

tenancies. Modern container platforms such as Kubernetes help us make this approach

a reality. We will discuss Oracle Kubernetes Engine in Chapter 8.

The cloud computing characteristics outlined at the beginning of this chapter and

the core capabilities briefly discussed a few sections earlier apply to every kind of cloud

no matter what the deployment model and the service model are. Let’s take a look at the

three service models available.

 Service Models
The responsibility is split between a cloud provider and a cloud service consumer. In

other words, a cloud account owner’s responsibilities depend on the type of service.

In this context, we classify the cloud services using three commonly known cloud

computing service models.

• Infrastructure as a service (IaaS)

• Platform as a service (PaaS)

• Software as a service (SaaS)

The four core cloud computing capabilities (compute, storage, networking, and

IAM) are considered part of the most fundamental service model called infrastructure

as a service. This service model gives you the greatest control over the individual, often

low-level, elements such as virtual machines that host your cloud solution. Using

cloud resources that, from an architecture point of view, can be easily conceptually

mapped to the hardware infrastructure we are used to working with allows you to plan

the cloud infrastructure in a similar way to what you would do if you were working

Chapter 1 IntroduCIng oraCle Cloud InfrastruCture

28

with physical hardware. You just do not need to worry about things like power supply,

cooling, or physical security enforced in on-premise data centers. Yet, you continue to

be responsible for the networking configuration (virtual firewall security rules, routing,

VPN setup, etc.), operating systems management (especially updates), and some

aspects of the storage capability (logically attaching new block volumes, creating file

systems, mounting shared filesystems, etc.). Greater flexibility comes at the cost of more

responsibility.

If you would like to focus on designing and implementing cloud software and skip all

the facets related to the runtime management, you will probably choose cloud resources

such as a managed database or a managed container engine. That kind of cloud resource

belongs to the service model called platform as a service because it provides you with a

managed platform where all platform management tasks such as patching or managing

the underlying hardware resources are done by the cloud provider. Your task is to deploy

the solutions you’ve built and scale your platform instance to meet your expectations

related to performance. You may encounter many types of PaaS services such as the

following:

• Application runtime engines

• Container orchestration engines

• Data and application integration platforms

• API management platforms

• Relational and NoSQL databases

• Messaging solutions

• Big data analytics and business intelligence platforms

Various IaaS and PaaS cloud resources are, on numerous occasions, complementary

to each other. You can imagine building your cloud solutions using a combination

of virtual machines that host applications that use not only the object storage but a

managed database and some kind of messaging cloud service as well.

The third service model, software as a service, is all about using the software. In this

model, there is little, if nearly any, responsibility to build things. SaaS applications are

meant to support your business processes, store process-related data such as customer

master data, and let you automate all kinds of data imports and exports the business

context requires. Multiple tenants (cloud consumers) usually work with the same cloud

Chapter 1 IntroduCIng oraCle Cloud InfrastruCture

29

application cluster and physical data store, but their data and access are isolated from

other cloud accounts. As a SaaS consumer, you do not need to install anything. You

usually begin by setting up a tenancy, creating or federating users, assigning proper

access rights, performing some startup configuration, and uploading the initial data sets

such as your master data along with the historical transactions you would like to see in

the new system. As a matter of fact, the list of SaaS application types may seem endless.

Here are a few examples:

• E-mail service or an office suite available to the general public

• Customer relationship management used by different companies

• Large-scale enterprise performance management integrated with a

cloud suite of enterprise resource planning services

As your company moves more business processes to the cloud, you will probably

end up with a diverse set of cloud applications from different cloud providers. As

a consequence, you will have to integrate these applications to make smooth data

exchange between them possible. Otherwise, your processes won’t work. This is

the reason why, quite often, cloud architectures that include SaaS applications also

encompass one or more PaaS platforms.

At the beginning of this section, I pointed out that different types of cloud services

entail differing responsibilities split between cloud consumer and cloud provider.

Next, I briefly explained how the three service models vary. Figure 1-9 presents these

differences in the form of a single, tabular overview.

Chapter 1 IntroduCIng oraCle Cloud InfrastruCture

30

In the next section, we will talk about cost-related matters.

 Costs
A wise man once said that there is no such thing as a free lunch. Regardless of whether

you are running a private cloud exclusively for your organization or, more likely,

consuming public cloud services, someone still has to pay for the underlying equipment,

maintenance, powering, cooling, and data center facilities.

From the cloud provider point of view, it is crucial to accurately measure the

consumption of cloud services and charge the project teams and the cloud account

owners according to what they have really used. What kind of metrics are used to track

the consumption of cloud services usually depends on the type of cloud resources.

For example, the overall compute instance consumption may be measured using the

total number of CPU hours that have been used by the running instances within a

chosen billing interval such as a calendar month. The usage metrics for the networking

capability may be based on gigabytes of the outbound data traffic beyond some threshold.

Figure 1-9. Service models and consumption patterns

Chapter 1 IntroduCIng oraCle Cloud InfrastruCture

31

Object storage utilization may be calculated based on the gigabytes of the stored data

and the number of requests sent to the object storage API.

Now, let’s take a quick look at the two most common pricing options available

from public cloud providers. In the early stage of a software project, your teams are

usually working with a number of development and test environments. These kinds

of environments tend to constantly change by expanding and contracting the number

and the size of the cloud resources. The usage of cloud services can largely differ each

month, and, as a result, it may be difficult to predict any future consumption. Pay as you

go is the pricing option that will work well in this case. On the grounds of metrics-based

measurements, you and your cloud provider know precisely the level of consumption

and the cost you are going to bear at the end of the billing interval. This pricing option

allows one more thing that is especially important for some proof-of- concept or

research-and-development activities. Specifically, not every attempt to innovate or

simply build a new cloud solution succeeds or finds the reasonable audience to pay its

bill in the long term. The pay-as-you-go pricing does not entail any commitment. If you

want, you can terminate all your cloud resources at any time, effectively stopping any

further charges.

The second pricing model is based on a yearly or even longer commitment. You

commit yourself that you are going to spend an agreed amount of money on cloud

services each month. If you spend less than what you have declared, it is your loss. If you

spend more, the overcharges would kick in and probably result in additional charges

based on the pay-as-you-go pricing model. At first glance, this model makes no sense

because it lacks the flexibility of the first one. Yet, the fact that you commit yourself (or

rather your organization) to spend a set amount of money on the cloud services each

month makes you eligible to benefit from, usually significantly, discounted prices. This

pricing option seems to be a perfect fit for a stable production environment, where you

already know the average monthly consumption. Alternatively, you can decide to switch

to the commitment-based pricing from the pay-as-you-go pricing for your development

and test environments, as soon as you are able to say that the risk of a sudden project

closure is low and it is possible to predict the future consumption. Figure 1-10 presents

a cost comparison between a pay-as-you-go (PAYG) option and a commitment-based

option with a 20 percent discount.

Chapter 1 IntroduCIng oraCle Cloud InfrastruCture

32

You should now have a pretty consistent, high-level understanding of cloud

computing. It is time to introduce you to the main subject of this book: Oracle Cloud

Infrastructure.

 Oracle Cloud Infrastructure
Oracle Cloud Infrastructure (OCI) is a suite of infrastructure-as-a-service public cloud

services Oracle has made available for the general public, small businesses, nonprofit

organizations, government agencies, and large enterprises. OCI delivers a broad range of

cloud resources that fulfill core cloud capabilities such as compute, networking, different

kinds of storage, and identity and access management. Furthermore, OCI features a

number of integrated platform-as-a-service cloud services built on top of the OCI IaaS

layer. These include, but are not limited to, two types of fully managed Oracle Database

known as Autonomous Transaction Processing (ATP) and Autonomous Data Warehouse

(ADW), managed container orchestration using the open source Kubernetes engine, and

an integrated Docker container registry. Furthermore, the OCI ecosystem includes a rich

choice of diverse templates that use the open source provisioning tool called Terraform

to deploy systems such as different NoSQL databases, data integration platforms, and

data science workbenches.

Figure 1-10. PAYG vs. commitment-based plan

Chapter 1 IntroduCIng oraCle Cloud InfrastruCture

33

Oracle Cloud Infrastructure evolved from the smaller-in-scope Oracle Bare Metal

Cloud Service (BMCS) built by a Seattle-based Oracle team of experienced cloud

professionals coming from diverse backgrounds such as other public cloud providers,

independent software vendors, and the open source ecosystem.

 Regions
Oracle has been a global leader in database systems and business applications for

decades. Moreover, nowadays, its portfolio of information technology solutions includes

middleware platforms, integration tools, business intelligence, analytics products,

and more. Since the acquisition of Sun Microsystems, Oracle has additionally become

the custodian of the Java ecosystem. Currently, Oracle is on its way to complete the

company’s transformation to the cloud by adding more advanced features to Oracle

Cloud Infrastructure, which is sometimes referenced as the Gen2 cloud infrastructure,

moving its PaaS services to OCI and geographically expanding its global footprint by

adding new data center regions, as shown in Figure 1-11. You can always find an updated

map at https://cloud.oracle.com/regions.

Figure 1-11. Oracle Cloud Infrastructure regions9

Chapter 1 IntroduCIng oraCle Cloud InfrastruCture

https://cloud.oracle.com/regions

34

Each Oracle Cloud Infrastructure region consists of one or more availability domains

located in a geographical proximity and composed of one or more data centers. The

availability domains within a single region are interconnected using low-latency

and high-bandwidth links but still physically isolated to help survive sudden natural

disasters or, more often, a cascade of equipment failure. The likelihood of two availability

domains failing at the same time is rather small, so it should be enough to design your

cloud solutions in a way that the cloud resources are replicated across two or even three

availability domains in order to achieve truly highly available architecture.

Note newly introduced regions may offer a single availability domain either
permanently or just for some initial period of time.

Less critical systems can be distributed across two or three fault domains within a single

availability domain. What does this mean? Hardware inside a single availability domain

can be split into physically isolated units of equipment called fault domains. In this way, a

power unit failure or a cascade of equipment failures within a single hardware unit may be

separated from impacting other units. Instances provisioned in one fault domain are less

likely to be impacted by the technical problems originating in a different fault domain. Still,

if possible, it is recommended to rely on the availability domains if your cloud solutions

are meant to survive and remain in operation under unexpected conditions. Figure 1-12

presents the relationships between region, availability domains, and fault domains.

Figure 1-12. Regions, availability domains, and fault domains

What kind of workloads are we able to execute on Oracle Cloud Infrastructure? Let’s

move to the next section to answer this question.

Chapter 1 IntroduCIng oraCle Cloud InfrastruCture

35

 Workloads
When you consider moving an existing solution or building a completely new service in

the cloud, you should always begin by looking at the data you are going to process and

store in the cloud. Depending on the geographical region and the legal jurisdiction you

fall within, you will be often legally obliged to comply with various data protection acts.

This is the aspect to which you should actually pay more attention in the beginning than

the application architecture planned for your cloud-based solution.

From a purely technical point of view, as long as it is possible to successfully

compose a sufficient set of cloud infrastructure resources that collectively serves as

a backbone to the cloud solution you are working on, we can say that this kind of

application or workload is indeed supported by Oracle Cloud Infrastructure. If we were

asked to list a few typical types of systems you could run on OCI, we could come up with

applications such as the following:

• Multitier web applications provisioned using virtual machines or

powerful, dedicated bare-metal hosts launched in public and private

virtual cloud network subnets. Using a proper mix of public and

private subnets allows you to keep an accurate isolation for each

application tier.

• Distributed, microservices-oriented, container-based systems

running on a managed Kubernetes container engine, called Oracle

Kubernetes Engine.

• Database-contained workflows, transactional or analytical, backed

up by a feature-complete, market-leading, fully managed relational

database management system, called Oracle Autonomous Database.

• High-performance computing (HPC) that supports things like

rendering, engineering simulations, or big data workloads.

• Various traditional applications lift-and-shifted from their earlier

on-premise environment and deployed in the cloud infrastructure

that design mirrors the on-premise hardware setup.

• Serverless workloads using Oracle Functions that relies on the open

source Fn Project.

Chapter 1 IntroduCIng oraCle Cloud InfrastruCture

36

• Or anything else that requires additional, peak-time processing
capacity beyond what you are able to deliver with your current

infrastructure.

Last but not least, independent professionals could also benefit from subscribing to

their own cloud tenancies. Instead of using a dozen VMs, individual developers could

consider performing some of their work using cloud-based compute instances in place

of heavy-footprint, locally hosted virtual machines. As another example, it is faster to

provision a managed Kubernetes engine that consists of multiple worker nodes in the

cloud than doing it on a set of virtual machines hosted locally on your laptop.

 Services
Each of the core cloud capabilities we’ve discussed so far in this chapter is a logical

grouping of related cloud resource types. For example, the compute capability can be

delivered with the cloud resources such as a compute instance, an instance pool, or a

compute image. From the naming point of view, Oracle Cloud Infrastructure organizes

cloud resource types into services. In this section, we will briefly outline and characterize

these services and their most common cloud resource types. I’ve collected them in

Table 1-1.

Table 1-1. Oracle Cloud Infrastructure Services

Service Selected Cloud Resource Types

Compute Compute instances provide computational power to run software in the cloud.

they are based on images, which specify a preinstalled software stack for an

instance. they use shapes to determine the allocated virtual hardware profile.

the instances can be provisioned stand-alone or pooled using node pools.

a node pool is created based on an instance configuration that can be

seen as an extended instance definition. a vNIC attachment cloud resource

attaches a particular compute instance to a virtual network interface card. a

vnIC gets created in a selected virtual cloud network subnet and connects the

instance to a virtual cloud network.

(continued)

Chapter 1 IntroduCIng oraCle Cloud InfrastruCture

37

Table 1-1. (continued)

Service Selected Cloud Resource Types

networking A virtual cloud network is a software-defined private network created within

an oracle Cloud Infrastructure region. It can span multiple availability domains.

You subdivide it into one or more subnets. traffic is routed based on the route

rules created in a route table that gets referenced by one or more subnets.

access to the Internet is enabled by an Internet gateway you point to as a route

rule target. NAT gateways let instances in private subnets establish outbound

connections to the Internet. a subnet can reference one or more security lists

that consist of stateful and stateless security rules. the rules effectively furnish

a particular subnet with an additional layer of a virtual firewall. an instance that

attaches to a public IP cloud resource is directly reachable from the Internet

as long as the particular traffic is allowed by the security rules that are being

enforced.

Block volume a boot volume holds a compute image, provides a root filesystem, and is used

to fire up a compute instance. an instance can get additional block volumes

attached to increase the available total block storage. It is possible to create

point-in-time volume backups of both types of volumes. the backups can be

either incremental or full and optionally driven by automated volume backup
policies.

object storage data entities of any type are stored as objects inside virtual containers

called buckets that are usually used to group related objects. the objects

can be accessed by authenticated and authorized oCI users or with the

use of short-living pre-authenticated requests. a bucket can be created as

an archive only, which would decrease the cost of storage but add some

time before an object is available for a download. Moreover, it is possible to

employ lifecycle policy rules to either delete or archive an object after a given

period of time has elapsed.

file storage a shared file storage file system can be created in a selected subnet.

You attach your compute instance to a particular file system using details

provided by a mount target cloud resource, which exists within the file

system cloud resource. You can use point- in- time views called snapshots to

implement a backup mechanism for your shared file system.

(continued)

Chapter 1 IntroduCIng oraCle Cloud InfrastruCture

38

Service Selected Cloud Resource Types

IaM Compartments are used to isolate cloud resources that usually belong to

different projects hosted under a single cloud tenancy. You define cloud users

locally or federate the tenancy with an external identity provider. a policy

consists of policy statements that grant various types of access over cloud

resources to groups of users. Dynamic groups allow matching compute

instances to issue apI calls permitted for that group.

load balancing a load balancer distributes the incoming traffic to the instances registered in

backend sets based on the chosen distribution algorithm.

database oltp applications, which have to support write-intensive, high-throughput,

and transaction-intensive operations, can leverage autonomous transaction
processing. olap workloads, which reinforce data warehousing and business

intelligence systems, are meant to use autonomous data warehouse. the

instances of both cloud resource types give you a fully managed oracle

database experience.

Container registry each cloud account comes with an associated container image registry where

you can store docker images using public and private repositories.

Container engine the container engine for Kubernetes lets you launch fully managed

Kubernetes clusters with associated node pools for worker nodes that are

provisioned as compute instances.

serverless open source fn project functions can be deployed to the managed oracle

functions service for serverless computing.

dns the domains you own can be redirected to a dns zone where custom dns

records can be created.

Web application

firewall (Waf)

Internet-facing application endpoints can be protected against potentially

malicious and unwanted inbound traffic using a set of predefined WAF
policies ranging from simple captcha or geolocation filters to more

sophisticated traffic patterns.

Table 1-1. (continued)

Chapter 1 IntroduCIng oraCle Cloud InfrastruCture

39

Table 1-1 is meant to give you a high-level overview by describing the selected cloud

resources types grouped into Oracle Cloud Infrastructure services. Still, there are more cloud

resource types available already, and we should expect even more arriving in the future.

Some cloud resources such as virtual cloud networks or IAM users are free of charge.

Others, for example, compute instances, database instances, or load balancers, will incur

consumption-related costs. Let’s take a closer look at the billings.

 Billings
In the “Costs” section earlier in this chapter, I mentioned how the cloud resource

consumption is usually measured and what the two pricing options typically

encountered are while working with any public cloud provider.

• Pay-as-you-go pricing

• Commitment-based pricing

Oracle Cloud Infrastructure indeed offers a pay-as-you-go pricing option. This

is the default pricing option for a new cloud tenancy you create on your own. The

consumption is measured based on different kinds of metrics, depending on a particular

cloud resource type. At the end of each month, your credit card is charged, and you

eventually receive an invoice. It’s as simple as that. This option is a good choice for an

evaluation phase, for prototyping, or when you are simply unable or do not want to make

any estimate of the regular service consumption in future months. No commitment gives

you full flexibility to scale your consumption down or up, any time you want, with no

need to pay for unused credits.

I’ve just mentioned the word credits. We will learn why by discussing how Oracle

offers commitment-based pricing. In 2018, Oracle announced universal credits as the

term associated with its purchasing model for this kind of consumption. A customer

who feels confident about their regular cloud services consumption can enter into an

agreement with Oracle and consequently purchase a number of universal credits for a

discounted price. At the time of writing, the shortest commitment possible is 12 months.

The discount can be significant, but it may depend on the commitment period and the

number of purchased credits. Universal credits can be spent on any type of Oracle Cloud

Infrastructure setup and a large number of various PaaS services. At the time of writing,

this model makes it possible to completely change the consumption pattern under

the same agreement. For example, you could move your application from a multitier

architecture built on a large number of virtual machines to a microservices- based

Chapter 1 IntroduCIng oraCle Cloud InfrastruCture

40

system running on Oracle Kubernetes Engine whose worker nodes are backed by fewer

but more powerful bare-metal hosts. After this change, your credits would be simply

consumed by resources related to your new setup.

Note as with every kind of business, pricing models can change rapidly;
therefore, please refer to the official documents or sales representatives to get the
most up-to-date pricing options. You can find more details at https://cloud.
oracle.com/pricing/options

Companies and organizations that are already using Oracle Database may be eligible

to decrease their cloud-based Oracle Database costs even further by choosing the

bring-your-own-license (BYOL) option. First, you have to make sure that your current

on-premise license is compliant with this option. If confirmed, to leverage lower charges,

you just need to check the appropriate box or pass the required API request parameter

while provisioning a new instance of any Oracle Database type that is available on Oracle

Cloud Infrastructure.

The most convenient way to visualize the costs incurred by various types of cloud

resources is to use the billings view in the OCI Console, as shown in Figure 1-13. You can

use filters to see the charges for a selected period of time.

Figure 1-13. Viewing billings in the OCI Console

Chapter 1 IntroduCIng oraCle Cloud InfrastruCture

https://cloud.oracle.com/pricing/options
https://cloud.oracle.com/pricing/options

41

No matter which pricing option your cloud account is subject to, you or your tenancy

administrators will probably want to see the aggregated cost split of the consumed cloud

resources between each business unit or project. Oracle Cloud Infrastructure provides

two tools that can help you make the cost split visible: compartments and cost-tracking

tags. You will learn about compartments in Chapter 4 where we take a closer look at

how to organize a project hierarchy. Using multiple compartments and attaching cost-

tracking tags to cloud resources will result in additional filters you can apply in the

billings view in the OCI Console.

 Support
At some point in time, it is inevitable that you will find yourself in need of some

assistance. First, you may have questions related to cloud services to which you cannot

find straightforward answers in the documentation. You may even spot some cloud

service issues that have to be explained and, if confirmed, solved. In all likelihood,

however, your first service requests will be associated with increasing service limits.

What is a service limit? I would say it is an aid used by the cloud provider to

supervise the greatest possible consumption of various types of cloud resources and

avoid any potentially hazardous oversubscription. If this sounds a bit vague, let me

give an example that should shed some light on the practical implications for cloud

consumers. Imagine a hypothetical situation in which there are exactly 1,000 bare-metal

machines with 52 CPUs each in the first availability domain of a particular region. What

would happen if all of them were in use, with some running virtual machines and others

being dedicated to a single tenant, while a new customer is trying to provision another

compute instance? Well, the provisioning process would most likely fail, due to a missing

physical CPU in a pool. To avoid such situations, the cloud provider keeps track of the

granted service limits on each customer for each cloud resource. For example, your

cloud account may have service limits set in a way that you are allowed to provision no

more than 30 VMs with 1 CPU each, 10 VMs with 2 CPUs, and 1 bare-metal machine

with 52 CPUs, all in a particular availability domain (AD). In this way, the cloud provider

would be aware that you can self-provision up to 40 VMs that would consume 50 CPUs in

total and one additional bare-metal machine that requires 52 CPUs. Adding up service

limits from all cloud accounts, the cloud provider is able to see whether the physical

resources in a particular AD are able to serve all virtual cloud resources that may get

provisioned and react properly.

Chapter 1 IntroduCIng oraCle Cloud InfrastruCture

42

Before you provision your target architecture, you need to make sure your service

limits will let you create the cloud resources you want to use. The standard service

limits you start with using a trial account are set to really low values, so you may find

yourself needing to get some of them increased almost immediately. Although the task

itself is done by the support team, your responsibility is to create a new service request

and provide the details of what exactly has to be increased. You can do this in the OCI

Console, as shown in Figure 1-14.

Other types of service requests have to be submitted through the Oracle Cloud

support portal. You can find it at https://support.oracle.com. Remember to select the

Cloud Support portal option before or after you sign in.

Figure 1-14. Increasing service limits in the OCI Console

Chapter 1 IntroduCIng oraCle Cloud InfrastruCture

https://support.oracle.com

43

 SLA
Both software and hardware can break at the least expected moment. It is no different

in the cloud computing world. The failure of software or hardware in a data center

that backs a public cloud platform can result in immense problems with the deployed

cloud solutions, including service unavailability, interrupted transactions, business

processes put on hold, and data corruption. Cloud providers make their best effort

to eliminate the risk or mitigate the potential consequences of cloud service failures.

Some of them use service-level agreements (SLAs) to make a written, official promise

about the availability, manageability, or performance of the various cloud resources

they host. For example, at the time of writing, Oracle guarantees that a compute region

will be available for at least 99.99 percent of time and an availability domain for at

least 99.95 percent of time. If these thresholds are not met, Oracle would issue some

amount of service credits as compensation. The number of service credits depends

on multiple factors such as your cloud consumption in the given month in which a

particular SLA was unmet, the type of unsatisfied SLA, and the extent to which the SLA

hasn’t been met expressed as a percentage. Service credits can be used in one of the

future billing periods as additional credits to pay for cloud resource consumption and,

in this way, effectively decrease either your PAYG charges or any potential overcharges

on a commitment-based plan.

Note slas and their rules can change in an instant; therefore, please refer to the
official documents or contact sales representatives. You can find more details at
https://www.oracle.com/cloud/iaas/sla.html.

Let’s take a look at a simplified example. Please note that, at the time you are

reading this, the rules or even the entire process might have changed, so treat this as

an introduction to the topic of cloud SLAs. Figure 1-15 illustrates the scenario we will

discuss.

Chapter 1 IntroduCIng oraCle Cloud InfrastruCture

https://www.oracle.com/cloud/iaas/sla.html

44

Figure 1-15. Cloud SLA example

You are running an application in your pay-as-you-go cloud tenancy.

The application nodes are operating on multiple virtual machines deployed in a

fault- tolerant way and spread across two different fault domains within one availability

domain. The compute instances are using block storage for their boot volumes. In

addition, the application is persisting business-related data in object storage buckets.

Suppose there is an SLA that guarantees that an availability domain (AD) is available

at least 99.95 percent of time in each calendar month. If this threshold is not met,

Table 1-2 presents the service credits that apply.

Table 1-2. Service Credit Levels

AD Availability Service Credits

99.00%–99.95% 10%

less than 99.00% 25%

What does “an availability of an AD” actually mean? At the time of writing, an AD

is considered unavailable if you experience no external connectivity to the compute

instances that are running in at least two fault domains within that particular availability

domain. Returning to our example, let’s assume you were not able to connect to your

Chapter 1 IntroduCIng oraCle Cloud InfrastruCture

45

application instances for eight hours in July. You collect logs as proof, attach them to

an online claim, and submit the claim for approval. Oracle approves the claim at the

beginning of August and grants you $250 in the form of service credits based on these

two facts:

• Your compute-related consumption in July incurred the

cost of $1,000.

• The AD was available less than 99.00 percent of the time in July.

Now, you should be able to decrease the cost of compute cloud resources in

September by $250. Again, please remember that this was just an example to illustrate

the way some SLAs work. At the time of writing, the rules and SLA thresholds might be

completely different, so please refer to the official SLA documentation.

This chapter has equipped you with a lot of introductory information. Now, it is time

to sign up for a trial cloud account if you haven’t done it already.

 Trial
The best way to begin your journey with Oracle Cloud is to sign up for a new trial cloud

account. At the time of writing, the trial account comes with $300 worth of credits for

30 days. To sign up for an Oracle Cloud trial, go to https://oracle.com/cloud and click

the Try Oracle Cloud Free Tier button and then click Start for Free. The screen shown in

Figure 1-16 will be displayed.

Chapter 1 IntroduCIng oraCle Cloud InfrastruCture

https://oracle.com/cloud

46

It usually takes a few minutes to fill in the form and validate your identity through a

verification code sent to your mobile number. You will also need to provide your credit

card details. This will let you smoothly upgrade your trial account, at the end of the

evaluation period of 30 days, to a standard pay-as-you-go account, if you decide to, of

course. Furthermore, you can try contacting your regional Oracle sales representative to

negotiate more credits and a longer evaluation time for your trial.

The easiest way to recognize whether you are working with a trial or a regular paid

account is to look at the top bar in the OCI Console. There will be a narrow purple-white

bar with relevant information displayed at the top of the OCI Console. It takes a couple

of minutes to fully initialize your new cloud account. During that time, you will see an

orange bar informing you about that, as shown in Figure 1-17.

Figure 1-16. Signing up for Oracle Cloud

Chapter 1 IntroduCIng oraCle Cloud InfrastruCture

47

To keep an eye on your ongoing service consumption, you can observe the Billing

widget in the OCI Console. The trial tenancy will display something like what is shown in

Figure 1-18. Information in the Billing widget is updated once a day.

Figure 1-17. Trial account information bar in the OCI Console

Figure 1-18. Viewing the trial cloud account billing summary in the OCI
Console

Remember that selected services are additionally discounted during the trial period.

This gives you more time to test the services that are a bit more expensive than the rest.

 Summary
In this introductory chapter, you started your cloud computing journey by looking

at hardware and virtual resources. Immediately afterward, I shared with you my two

favorite cloud computing definitions, and we briefly discussed cloud computing

characteristics. Next, we talked about each of them in more detail. Then, we covered the

difference between the traditional and rapid self-provisioning of hardware resources,

elasticity and scalability, and the implications of delivery as a service. As a next step,

we took a quick look at the importance and types of APIs. Subsequently, the four core

cloud computing capabilities (compute, storage, networking, IAM) were covered.

Chapter 1 IntroduCIng oraCle Cloud InfrastruCture

48

After that, you were able to read about cloud deployment models and cloud service

models. Following that, we spent some time talking about cost-related matters such

as metrics, consumption measurement, and two pricing options: pay-as- you-go and

commitment-based plans. In the second part of this introductory chapter, I introduced

you to Oracle Cloud Infrastructure. You learned about regions, availability domains, and

fault domains. Afterward, we listed a few illustrative types of workloads you may run on

OCI. The next section was devoted to OCI services and the types of cloud resources they

include. Subsequently, I talked about pricing options available on OCI, billing, the role

of support, and service-level agreements. Finally, I outlined the way you can sign up for a

trial so you can test OCI for 30 days at no cost.

The next chapter will teach you how to build your first cloud-based solution using

the Oracle Cloud Infrastructure Console. The basic concepts will be explained on the fly.

To learn them properly, we are going to take the long way, avoiding OCI Console wizards

that could speed things up. Do not worry; starting from Chapter 3, you will be using

automation just as you would do in your daily work with OCI. If you are using a trial

account, no costs will be incurred.

 Notes

 1. https://csrc.nist.gov/publications/detail/sp/800-145/final

 2. Gartner, IT Glossary, Cloud Computing. https://www.gartner.

com/it-glossary/cloud-computing

 3. www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_

style.htm

 4. www.w3.org/Submission/wadl

 5. https://github.com/OAI/OpenAPI-Specification/blob/

master/versions/3.0.0.md

 6. https://tools.ietf.org/html/rfc7143

 7. https://tools.ietf.org/html/rfc1094

 8. https://cloud.oracle.com/regions

Chapter 1 IntroduCIng oraCle Cloud InfrastruCture

https://csrc.nist.gov/publications/detail/sp/800-145/final
https://www.gartner.com/it-glossary/cloud-computing
https://www.gartner.com/it-glossary/cloud-computing
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.w3.org/Submission/wadl
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md
https://tools.ietf.org/html/rfc7143
https://tools.ietf.org/html/rfc1094
https://cloud.oracle.com/regions

49
© Michał Tomasz Jakóbczyk 2020
M. T. Jakóbczyk, Practical Oracle Cloud Infrastructure, https://doi.org/10.1007/978-1-4842-5506-3_2

CHAPTER 2

Building Your First
Cloud Application
This chapter shows how to create a simple cloud infrastructure and run two instances of

a custom REST API behind a load balancer. The API implementation presented in this

chapter will serve as an example. The main goal is to guide you through the process of

building your first cloud-based solution from scratch. Later, in the course of the book,

you will also learn how to provision autoscaled instance pools, deploy your apps in

Docker containers to Oracle Kubernetes Engine, and execute serverless functions on

Oracle Functions. At this stage, however, let’s focus on the foundations and use standard

virtual machines.

There are multiple ways you can talk to an Oracle Cloud Infrastructure cloud

management plane. In this chapter, we use the Oracle Cloud Infrastructure Console,

which is a web browser interface for managing Oracle Cloud Infrastructure resources.

This approach is appropriate only when you want to demonstrate selected capabilities

or experiment with the features that are new for you. In the real world, you either

automate the entire provisioning process with a dynamic, procedural command-line

interface (CLI) or manage the infrastructure as code using declarative Terraform-driven

infrastructure descriptors. The automation is the main subject of the third chapter.

Moreover, the vast majority of walk-throughs in all the remaining chapters of this book

present the cloud automation in action.

50

 Planning the Infrastructure
In this section, we will take a look at the cloud application we are about to deliver and

plan the cloud resources we will require for it.

 Cloud Account
Before you proceed, you need to have a cloud account at your disposal. You will probably

use either a trial account or a standard pay-as-you-go account. A trial account will let

you complete all the walk-throughs from this book at no cost. If you have a paid account,

you just need to remember to terminate (in other words, delete) every resource you build

as part of the learning process so you won’t be charged.

Tip How is a new trial account created? See the “Trial” section of the previous
chapter.

For some of you, there may be one more option. If the company you work for has

an active Oracle Cloud Infrastructure subscription, you may consider asking your

colleagues, the cloud admins, to create a dedicated compartment (e.g., called Sandbox)

where you can complete the exercises from this book. Yet, some cloud resources

described in this book and created as part of the hands-on exercises do require tenancy-

owner access level; therefore, it is highly recommended you sign up for your own trial

account.

 Project Compartment
It is not unusual for an organization to use a single cloud account (also called a cloud

tenancy) to host multiple, sometimes unrelated and isolated, projects. Different cloud

providers provide various means to keep unrelated resources apart. Oracle Cloud

Infrastructure does that with compartments and tags. Being aware of this helps you plan

because you can easily divide the entire solution landscape into smaller, more granular,

separately managed pieces of architecture with fewer components in each piece. In

this way, the same cloud account can be used to host multiple development, test, and

production environments for numerous projects. Figure 2-1 briefly illustrates that

concept.

CHapTer 2 Building Your FirST Cloud appliCaTion

51

As you can see in Figure 2-1, compartments can reside inside other compartments,

putting in place an entire hierarchy. The topmost compartment is called a root

compartment, and all compartments you create or exist by default are its descendants.

This is shown in Figure 2-2.

Figure 2-1. Isolating projects using OCI compartments

Figure 2-2. A hierarchy of compartments

CHapTer 2 Building Your FirST Cloud appliCaTion

52

The traditional split into three standard environments (development, test, and

production) for each project is not necessarily the best one. I would even say it may lead to

governance problems because production compartments remain children to the project

compartments. In Chapter 4, you will learn another, more production-friendly compartment

composition strategy that separates top-level projects and system compartments.

Well, technically speaking, the root compartment is not a compartment. Every

Oracle Cloud Infrastructure resource has a type. All compartments are of compartment

type, except the root compartment, which is of tenancy type. Do not worry if this is

unclear at this stage. The only thing you should remember is this: do not create resources

directly in your root compartment. It is technically possible, but it is not necessarily a

good practice.

It is time for the first architectural decision. You need to decide in which

compartment to place the sample solution we are about to build in this chapter. If you do

not know, I will help you. Let it be a new Sandbox compartment. We will create it in a few

minutes. Now read on.

 Application Design
The cloud-based solution we are about to create provides a simple universal unique

identifier (UUID) generation service. Each time a client calls the API, they will receive

a new unique identifier. In short, a UUID is a fixed-size, immutable identifier created

with an algorithm that guarantees that the probability of creating duplicate identifiers

is negligible, no matter if run by multiple generators at the same time on the same or

different machines. Applications that rely on UUIDs do not require any central identifier

administration by design. You can find more details about UUIDs in RFC4122.

Figure 2-3 shows an example of a UUID.

Figure 2-3. UUID

The implementation will consist of two independent compute nodes that host the

same, stateless UUID generation logic in the backend, expose a simple REST API, and,

on every request, return a newly generated UUID (uuid object) and compute node name

(generator object) in JSON format, as shown in Listing 2-1.

CHapTer 2 Building Your FirST Cloud appliCaTion

53

Listing 2-1. API Response

{

"uuid": "8cf04d96-30c8-45f5-a2b5-c0ae68f58c4e",

"generator":"web1"

}

The requests are evenly distributed to the endpoints on both API nodes because

we place a load balancer in front of them and rely on a simple round-robin policy. Even

though this is a trivial demonstration scenario, we are still going to deploy each node

in a different availability domain to create a highly available solution. Such a design

increases the chances that our cloud service survives a disaster of a single data center. To

recap, an availability domain can be thought of as a single data center interconnected

with the remaining availability domains in the same region using a high-bandwidth link

that provides low latency. The likelihood that more than one availability domain fails

or gets destroyed at the same time is very low. Figure 2-4 shows a sketch of the solution

components and how they map to physical data centers.

Figure 2-4. Application components

CHapTer 2 Building Your FirST Cloud appliCaTion

54

Tip if your home region comes with a single availability domain, you can
still perform all the hands-on exercises in this and all subsequent chapters by
subscribing to another region that offers multiple ads. You can perform this action
in the oCi Console. Just go to Menu ➤ administration ➤ region Management and
click the Subscribe button next to one of the regions that comes with three ads.
Subscribing to a new region can take a few moments. You will then need to choose
the active region in the top-right corner of the oCi Console.

The time has come to take a closer look at the implementation. I have chosen to

implement the API server in Flask, a web-oriented Python microframework. I am pretty

sure you have already heard about the Python programming language. Introduced in

the early 1990s, it has experienced a rapid growth in popularity, especially in the last

decade. Python is considered a general-purpose language used across various domains

such as web development, data science, machine learning, cloud ecosystem, and even

the IoT. It is categorized as a multiparadigm, interpreted language with dynamic types

and automatic memory management called garbage collection. Supporting multiple

programming paradigms means that you are able to choose your preferred way of

coding, let it be procedural, object-oriented, or functional. Interpreted languages do not

need to be precompiled to machine code before execution but are run directly on an

interpreter. It simplifies the delivery pipeline, but with a performance drop. Dynamic

types and automated memory management boost the programming efficiency, making

the language easier to work with. Flask, on the other hand, is a web development

microframework with the main focus on processing HTTP requests and sending properly

rendered HTTP responses. It is fully WSGI-compliant. WSGI has been defined in PEP3333

and stands for Web Service Gateway Interface, which is a Python-ecosystem standard that

specifies an interface between web servers and web frameworks. For our convenience,

Flask comes with an embedded web server that is ideal for development purposes.

Listing 2-2 presents a UUID service implementation. You do not need to do anything

with the code. Everything will happen automatically on the cloud instance during its first

boot. How? Just read on.

Tip even though you do not need to do anything with the code, it is still available in
the git repository for this book at the chapter02/uuid-service/app.py path.

CHapTer 2 Building Your FirST Cloud appliCaTion

55

Listing 2-2. UUID Service Implementation

import flask

import uuid

import os

import socket

import logging

app = flask.Flask(__name__)

@app.route('/identifiers', methods=['GET'])

def identifiers():

 generator_name = os.getenv('UUID_GENERATOR_NAME', socket.gethostname())

 generator_uuid = uuid.uuid4()

 app.logger.info('Generator: [%s] UUID: [%s]', generator_name,

generator_uuid)

 rsp = flask.jsonify(uuid=generator_uuid, generator=generator_name)

 rsp.status_code = 200

 rsp.headers['Content-Type'] = 'application/json'

 return rsp

@app.before_first_request

def setup_logging():

 logging.getLogger('werkzeug').disabled = True

 app.logger.removeHandler(flask.logging.default_handler)

 handler = logging.StreamHandler()

 handler.setFormatter(logging.Formatter('%(asctime)s - %(levelname)s -

%(message)s'))

 app.logger.addHandler(handler)

 app.logger.setLevel(logging.INFO)

To keep the focus on the main subject of this book, I will avoid explaining the line-

by-line implementation details. What you should understand is that this application

routes all GET requests sent via the /identifiers URL to the identifiers() handler

CHapTer 2 Building Your FirST Cloud appliCaTion

56

function. The function prepares a response by combining a newly generated UUID with

the name of generator. The latter is set to the hostname, unless the UUID_GENERATOR_

NAME environment variable exists. The response is sent in JSON format, as shown here:

{

 "generator":"uuid1",

 "uuid":"e22b5858-e70f-46ab-bd16-0da3d55aca73"

}

Now, let’s get back on track and start defining the required Oracle Cloud

Infrastructure resources so that we can create them.

 Cloud Infrastructure
Based on the conceptual design that we briefly discussed in the previous section, we

know we will need two compute instances in two different availability domains behind

a highly available load balancer. The load balancer will use a public IP so that it can be

reached from the Internet. There are a few other supplementary infrastructure resources

we will create to make sure that the cloud design is complete.

First things first, however. We begin with designing the layout of the virtual network

where our resources exist. A virtual cloud network (VCN) can be thought of as a virtual,

private network that provides a contiguous block of IPv4 addresses. It is advisable to

choose an IPv4 address block that is commonly considered as private. RFC1918 defines

these addresses. If you want to adhere to this guideline, select any subset of the following

address ranges:

• 192.168.0.0/16

• 172.16.0.0/12

• 10.0.0.0/8

For our cloud solution, we will use this range: 192.168.1.0/24.

A VCN is subdivided into one or more subnets. The IP address ranges of the subnets

that belong to the same VCN have to be within the IP address range of the parent VCN

and mustn’t overlap with other subnets. Each compute instance you run in Oracle Cloud

Infrastructure will be attached to a particular VCN subnet. This is done through a virtual

network interface card called a vNIC.

CHapTer 2 Building Your FirST Cloud appliCaTion

57

Let’s decide on the layout of our cloud networking. Figure 2-5 shows the VCN

address space for our cloud solution and the address range split into subnets.

Figure 2-5. Virtual cloud network address range layout

As you can see in Figure 2-5, we will use four subnets.

• Subnet A for the first compute node hosting the UUID API

• Subnet B for the second compute node hosting the UUID API

• Subnet C for the first load balancer node

• Subnet D for the second load balancer node

In other words, we are going to run the UUID API application on two compute

instances launched in subnets A and B. The pair of the load balancer nodes will run in

subnets C and D. To achieve fault tolerance,

• Subnets A and C will be created in the first availability domain.

• Subnets B and D will be created in the second availability domain.

If you check the official OCI documents, white papers, or project architecture

documents, you will find that OCI resources (compute instances, load balancers,

networking resources, and others) are often presented using diagrams that follow the

same style and reuse a set of standard icons. I will now use Oracle Cloud Infrastructure

topology notation for the first time. Figure 2-6 illustrates the cloud infrastructure

topology we are going to build in this chapter.

CHapTer 2 Building Your FirST Cloud appliCaTion

58

Tip oracle has released a set of reusable graphical assets that everyone can use in
their architecture documentation. You can find them at https://bit.ly/2rfLk3V.

At this stage, we have a pretty clear vision of the cloud networking layout. Now, let’s

make a few choices about the compute instances.

The shape is a profile of hardware resources (CPU cores, available memory) offered

by a compute instance that is based on a given shape. Oracle Cloud Infrastructure

features two families of compute instance shapes.

• Bare-metal hosts: Dedicated, single-tenant hardware, no hypervisor

• Virtual machines: General purpose, multitenant hardware, hypervisor

Figure 2-6. Cloud infrastructure architecture

CHapTer 2 Building Your FirST Cloud appliCaTion

https://bit.ly/2rfLk3V

59

Some software such as messaging platforms, enterprise application servers, or

database engines are reported to be more stable and efficient on dedicated, physical

hardware with no hypervisor-managed virtualization involved. You can host them on

fewer, more powerful bare-metal hosts. In all other general-purpose use cases, you will

probably use more virtual machines to leverage horizontal scaling.

Note The bare-metal compute shapes family is deeply rooted in the origins of
oracle Cloud infrastructure. oCi actually evolved from a bare-metal-oriented cloud
offering called oracle Bare Metal Cloud Service.

Let me list just a few arbitrarily selected shapes that are offered at the time of writing.

• VM.Standard2.1 is the smallest standard virtual machine shape that

comes with 1 OCPU and 15GB of memory. It is powered by the X7

platform, which basically means that it is using Intel Xeon Skylake

processors.

• VM.Standard2.8 is another example of a standard virtual machine

shape that offers 8 OCPUs and 120GB of memory.

• BM.Standard2.52 is a standard bare-metal shape that leverages 52

OCPUs and 768GB of memory.

• BM.Standard.E2.64 is a bare-metal shape that uses AMD EPYC

processors with 64 OCPUs and 512GB of memory.

• BM.DenseIO2.52 is a bare-metal shape dedicated to I/O-intensive

workloads that are present in big data projects. It is backed with locally

attached SSD NVMe drives that offer 51.2TB of storage capacity.

• BM.GPU3.8 is a bare-metal shape intended to power machine

learning processes and high-performance computing (HPC)

software. In addition to 52 OCPUs and 768GB of memory, its real

capacity comes from eight Nvidia Tesla V100 GPUs.

In the preceding list, I used a new abbreviation. An Oracle compute unit (OCPU) is a

logical term and the most important metric for compute-related billings. You usually pay for

1 OCPU/hour. In other words, one hour of a running instance with 8 OCPUs will generate

the same compute-related cost as an instance with just 1 OCPU running for eight hours.

CHapTer 2 Building Your FirST Cloud appliCaTion

60

In the case of Intel-based shapes, a single OCPU corresponds to a single, physical

Intel Xeon core. The operating system actually sees two virtual cores for each physical

CPU core because of hyperthreading technology. To sum up, one Intel-based OCPU

means one physical CPU core and the capability of two nearly parallel execution threads,

sometimes called vCPUs.

You can easily guess that our first choice related to compute instances is the selection

of a shape for the nodes that will host the UUID service application. We are going to use

the smallest virtual machine available: VM.Standard2.1.

An image is a template that specifies the operating system and any additional

software that has to be preinstalled during the instance launch. An image is used to

initiate a new boot volume that a compute instance uses. A boot volume remains

associated with its compute instance until termination. A boot volume can be seen as

the primary storage that an instance uses, mainly for its operating system and software.

Oracle-provided images are periodically updated and receive new versions. Yet,

as soon as you launch an instance, it becomes your responsibility to schedule regular

system updates.

At the time of writing, Oracle Cloud Infrastructure provides four types of base

operating system images with the following operating systems:

• Oracle Linux

• CentOS

• Ubuntu

• Windows Server

In your daily work, you may end up creating a lot of custom images that add the

required software, services, or scheduled scripts to the base image of your choice. It is

also possible to import custom images that are not built on the available base images.

In this case, you would use either paravirtualization or emulation on a virtual machine

shape. Yet, the easiest way to create custom images is to rely on the base images provided

by Oracle.

What about making another decision? We will use the newest Oracle Linux base

image: Oracle Linux 7.6. You will probably use newer minor versions of Oracle Linux 7

as they appear in the future.

CHapTer 2 Building Your FirST Cloud appliCaTion

61

Note although the screenshots will show oracle linux 7.6, the exercises in this
chapter were additionally tested with an oracle linux 7.7 image.

We will now move to the last step in our planning process.

 Service Limits
You might wonder what would happen if too many tenants (cloud customers) launched

a large number of the most powerful bare-metal shapes in the same region at once. The

number of these machines is surely limited even in the largest data center, isn’t it? Well,

sure, it is. This is where the smart idea of service limits (also known as quotas) comes

into play.

Every cloud account has a set of service limits that define how many resources of

which type are allowed to be running at the same time. If you see that your current limits

are insufficient for your needs, you can request them to be increased simply by raising a

service request. This helps Oracle to plan and optimize data center capacity. Simple and

wise, isn’t it?

Tip You can always verify your usage against the current service limits for your
cloud account in the oCi Console. Just go to Menu ➤ governance ➤ limits,
Quotas and usage.

Verifying and optionally increasing the service limits before launching a new cloud

project should be included in your checklist for the planning phase.

The sample cloud solution we are working on in this chapter will include the

following OCI resources:

• One VCN

• Two VM.Standard2.1 compute instances

• One load balancer (100Mbps)

• One custom image

• Negligibly small size of block storage

CHapTer 2 Building Your FirST Cloud appliCaTion

62

If you are using a new trial account and haven’t created any resources yet, you can be

pretty sure that your default trial account service limits won’t be violated.

If you are using a paid account that already contains some OCI resources, please go

to Menu ➤ Governance ➤ Limits, Quotas and Usage in the OCI Console and check if

you can add the ones I’ve just listed. You may also need to ask your cloud administrator

to give you the numbers, if your OCI IAM user is not entitled to see the service limits.

What we’ve been doing until now was pure planning that was backed with some

elementary Oracle Cloud Infrastructure concepts discussion. We began with looking at

the application and mapped it to the cloud resources we would need. We are ready to

provision these resources.

 Provisioning the Infrastructure
We are now going to provision the cloud resources required to run the application,

which we’ve talked about in the previous section. I will simplify this example as much

as possible. This is why I am going to present how to deploy the UUID service on a

single node first. Later, we will add load balancing and fault tolerance. Here and now,

I am going to show you the manual way. What do I mean by that? We will manage

all resources using the Oracle Cloud Infrastructure Console. You may recall that I

mentioned this approach as appropriate only when you want to demonstrate selected

capabilities or experiment with the features that are new for you. The proper production-

ready automation will arrive in Chapter 3. For the time being, let’s start!

Please log into the Oracle Cloud Infrastructure (OCI) Console. Figure 2-7 presents

the main landing page in the OCI Console.

CHapTer 2 Building Your FirST Cloud appliCaTion

63

In the top-right corner of the OCI Console, you will see your active region. In my

case, as shown in Figure 2-7, it is the Germany Central region (eu-frankfurt-1). As I

mentioned earlier, some regions may consist of only one availability domain. The

exercises in this book have been tested in the Germany Central (eu-frankfurt-1) region,

and it is assumed that there are three availability domains present in the region you are

working with. At the time of writing, these are the following:

• Germany Central (eu-frankfurt-1)

• UK South (uk-london-1)

• US East (us-ashburn-1)

• US West (us-phoenix-1)

A single cloud account can own and manage resources in more than one region. You

just need to activate the additional region(s). To do so, follow these steps:

 1. Go to Menu ➤ Administration ➤ Region Management.

 2. Click Infrastructure Regions in the Resources menu.

 3. Click Subscribe To This Region next to the region name.

Figure 2-7. Oracle Cloud Infrastructure Console

CHapTer 2 Building Your FirST Cloud appliCaTion

64

Subscribing to a new region is an asynchronous operation that can take a few

minutes. At some point in time, after having refreshed the OCI Console, you should be

able to choose between regions in the top-right corner of the OCI Console.

Note Before proceeding with the exercises this book contains, please make sure
you are working in a region that comes with three availability domains. do not
hesitate to subscribe to an additional region if needed.

You may be wondering how we achieve fault tolerance in single-AD regions such as

the following:

• Australia East (ap-sydney-1)

• Brazil East (sa-saopaulo-1)

• Canada Southeast (ca-toronto-1)

• India West (ap-mumbai-1)

• Japan East (ap-tokyo-1)

• South Korea Central (ap-seoul-1)

• Switzerland North (eu-zurich-1)

There are two options that can be employed at the same time. First, you may

remember that each AD comes with three fault domains, as described in the previous

chapter. Fault domains are physically isolated units of equipment with separate

powering and cooling. In this way, it is less likely that two fault domains fail at the

same point in time. More critical systems can be spread across multiple regions. As an

example, while running an active system site in Tokyo, you could maintain a passive

system site in Seoul to enable disaster recovery (DR).

 Compartment
We need to choose a compartment in which our first cloud application will run.

Compartments serve as the primary mean to isolate unrelated OCI resources. In this

way, they can be used to separate different projects. From a formal point of view,

they belong to the IAM service. Unless you already have an existing compartment for

CHapTer 2 Building Your FirST Cloud appliCaTion

65

learning, it is advised that you create a new compartment to keep the artifacts you

provision as part of our Chapter 2 exercise isolated. Follow these steps:

 1. Go to Menu ➤ Identity ➤ Compartments.

 2. Click Create Compartment.

 3. Enter Sandbox for the name.

 4. Provide some description.

 5. Click Create Compartment.

The new compartment should get created nearly immediately. You may need to

refresh the page, unless you can see a new record for the newly created compartment, as

shown in Figure 2-8.

Figure 2-8. Viewing a compartment in the OCI Console

From now on, every time you create a new OCI resource in the console, you will need

to make sure that the appropriate compartment is selected in the Compartment combo

box, as shown in Figure 2-9.

Figure 2-9. Choosing an active compartment in the OCI Console

As we move closer to automating Oracle Cloud Infrastructure with the CLI and

Terraform, you will see that we are referencing the target compartment not by its name

but by using its Oracle cloud identifier (OCID).

Every OCI resource, including your tenancy, is uniquely identified by an immutable,

multipart, Oracle-assigned, strict-syntax key called an Oracle cloud identifier,

abbreviated as OCID. The resource identifier structure is strict. For the time being, it

always starts with ocid1, which indicates the current and only OCID version. The second

element is more important because it shows a resource type. At the time of writing, the

CHapTer 2 Building Your FirST Cloud appliCaTion

66

third element is always set to oc1. The fourth element denotes the region. Finally, the last

element is unique for every OCI resource. Figure 2-10 illustrates the OCID structure.

Figure 2-10. OCID

 Virtual Cloud Network
As the name says, a virtual cloud network (VCN) is a virtual network that is private to

your cloud tenancy. Yet, in the way you design and manage a VCN, it feels somehow

similar to well-known, traditional, physical IP networks you may have worked with or

learned about.

This is how you create a new VCN using the OCI Console:

 1. Go to Menu ➤ Networking ➤ Virtual Cloud Networks.

 2. Make sure that the Sandbox compartment is selected. On the

left side, slightly to the bottom, you will find the Scope section

with a combo box that you use to choose the name of the active

compartment.

 3. Click Create Virtual Cloud Network.

 4. Provide an optional display name for the new VCN (uuid-vcn).

 5. Select Create Virtual Cloud Network Only.

 6. Provide the CIDR block (192.168.1.0/24).

 7. Select the DNS Resolution box and leave the default of DNS label.

 8. Click Create Virtual Cloud Network to provision the VCN.

Figure 2-11 shows the OCI Console VCN creation wizard.

CHapTer 2 Building Your FirST Cloud appliCaTion

67

At the bottom of the wizard, you may have spotted some fields related to tags. You

will learn about tagging in Chapter 5.

We have decided to create a VCN because I am going to show you how to create all

the (or adapt the existing) required child resources such as the Internet gateway, route

rule, security rules, and subnets. In this way, you will understand how these components

work together.

Tip if you need to prototype a simple cloud setup, you can use the networking
Quickstart wizard. The oCi Console will not only create a VCn but also add the
most common child resources such as the internet gateway, route rule, and
subnets. This can be helpful when you want to test something quick and do not
need any special VCn setup.

Figure 2-11. Creating a new virtual cloud network

CHapTer 2 Building Your FirST Cloud appliCaTion

68

 Internet Gateway
An Internet gateway is a virtual router that provides connectivity between compute

instances in public subnets and the Internet. It must be defined as a target in the route

rule; otherwise, compute instances won’t know where to send their outbound packets

to. Let’s start by provisioning a new Internet gateway. This is how you do it using the OCI

Console:

 1. Go to Menu ➤ Networking ➤ Virtual Cloud Networks.

 2. Make sure that the Sandbox compartment is selected.

 3. Click the name of your VCN.

 4. Click Internet Gateways in the Resources menu.

 5. Select Create Internet Gateway.

 6. Provide an optional display name (uuid-igw).

 7. Click Create Internet Gateway.

Figure 2-12 shows the OCI Console Internet gateway creation wizard.

Figure 2-12. Creating a new Internet gateway

CHapTer 2 Building Your FirST Cloud appliCaTion

69

 Route Table
It won’t be a big surprise if I say that a route table stores route rules for a VCN. A route

rule defines how to direct the outbound traffic that is destined to travel outside the

VCN. In our case, we must define a rule that properly directs all packets sent to the IP

addresses that do not belong to the VCN address range. In IPv4 language, 0.0.0.0/0

means all addresses, and this is the value we are going to use in the destination CIDR

block of a route rule. We will also set the Internet gateway we’ve just provisioned as the

target for this rule.

A VCN comes with a default but empty route table resource. This is how you add a

new route rule to the existing default route table using the OCI Console:

 1. Go to Menu ➤ Networking ➤ Virtual Cloud Networks.

 2. Make sure that the Sandbox compartment is selected.

 3. Click the name of your VCN.

 4. Click Route Tables in the Resources menu.

 5. Click the name of the default route table.

 6. Click Add Route Rules.

 7. Choose Internet Gateway in the Target Type selection box.

 8. Place 0.0.0.0/0 in Destination CIDR Block.

 9. Choose uuid-igw in Target Internet Gateway.

 10. Click Add Route Rules.

Figure 2-13 shows the Add Route Rules screen in the OCI Console.

CHapTer 2 Building Your FirST Cloud appliCaTion

70

 Security List
We’ve already dealt with a virtual network, virtual router, and virtual route table. Now, it

is time to add some security. Every VCN subnet is required to have at least one security

list, which is a collection of security rules. You can think of these rules as an additional

layer of a virtual firewall, independent from the operating system firewall you control on

each individual compute instance. Before a request reaches a compute instance’s virtual

network interface, security rules are enforced.

There are two types of security rules based on traffic direction.

• Ingress, which means they validate the inbound traffic to VCN

• Egress, which means they validate the outbound traffic from VCN

A VCN comes with a default security list resource with some basic rules that allow

ingress SSH and basic ICMP traffic as well as all egress traffic. We still need to add a rule

that allows ingress traffic on the UUID service port (5000). This is how you add a new

security rule to an existing security list using the OCI Console:

Figure 2-13. Edit Route Rules screen in the OCI Console

CHapTer 2 Building Your FirST Cloud appliCaTion

71

 1. Go to Menu ➤ Networking ➤ Virtual Cloud Networks.

 2. Make sure that the Sandbox compartment is selected.

 3. Click the name of your VCN.

 4. Click Security Lists in the Resources menu.

 5. Click the name of the default security list.

 6. Select Ingress Rules in the Resources menu.

 7. Click Add Ingress Rule.

 8. Provide the required values:

 a. Place 0.0.0.0/0 in Source CIDR.

 b. Place 5000 in Destination Port Range.

 9. Click Add Ingress Rules.

Figure 2-14 shows a new ingress security rule we are adding.

Figure 2-14. An ingress security rule in the OCI Console

You may wonder what a small checkbox next to the Stateless label actually means.

We’ve left this checkbox empty. As a result, the new ingress rule we’ve added is a stateful

rule. Every time an inbound traffic (a request) on port 5000 is accepted by this stateful

ingress rule, the corresponding outbound traffic (a reply) will be automatically let

CHapTer 2 Building Your FirST Cloud appliCaTion

72

through with no other egress rule enforced. If you decide to use a stateless rule, you will

also need to create another stateless rule in the opposite direction that validates the

related traffic.

Stateful rules may sound like a perfect solution. Then why would we still use stateless

rules? Well, stateful rules require connection tracking that consumes resources and

introduces some latency. Furthermore, each compute instance has a limit of how many

connections can be tracked at a single moment. This is why the golden rule says that if

you are able to design your security rules as stateless rules, do it.

Figure 2-15 shows existing ingress security rules in the amended default security list.

Figure 2-15. Viewing ingress security rules in the OCI Console

Figure 2-16. Viewing egress security rules in the OCI Console

Figure 2-16 shows an existing egress security rule in the default security list.

So far, we’ve provisioned a new VCN, launched an Internet gateway, added a new

route rule to direct the outbound traffic via the Internet gateway, and created a stateful

ingress security rule to allow all incoming TCP connections on port 5000. Next, we will

create a new subnet and provision a new virtual machine.

CHapTer 2 Building Your FirST Cloud appliCaTion

73

 Subnet
A VCN is divided into one or more subnets. We attach compute instances, or more

precisely their vNICs, to the subnets. You may recall that as we were defining a new

VCN, we did not make any choices about availability domains. It is a subnet that you can

explicitly create in exactly one availability domain of your choice. All compute instances

that are created in a particular subnet will eventually have to run in the availability

domain the subnet was created in. Alternatively, it is possible to create subnets that span

all availability domains in a given region. That kind of subnets lets you launch instances

in a more flexible way, deterring the choice of an availability domain for an instance.

You’ll learn more about that in Chapter 6. For now, we are going to stick to subnets

bound to single availability domains. This is how you create a new VCN subnet using the

OCI Console:

 1. Go to Menu ➤ Networking ➤ Virtual Cloud Networks.

 2. Make sure that the Sandbox compartment is selected.

 3. Click the name of your VCN.

 4. Click Subnets in the Resources menu.

 5. Click Create Subnet.

 6. Provide the required values:

 a. Place a-net as a display name.

 b. Choose Availability Domain-specific Subnet Type.

 c. Select the first availability domain (suffixed AD-1) in your region.

 d. Place 192.168.1.0/28 as the CIDR block.

 e. Make sure that the default route table is chosen.

 f. Select the Public Subnet option.

 g. Mark Use DNS Hostnames in this subnet.

 h. Use the short, one-character label a as the subnet’s DNS label.

 i. Make sure that the default DHCP Options setting is chosen.

 j. Make sure that the default security list is chosen.

 7. Click Create Subnet.

CHapTer 2 Building Your FirST Cloud appliCaTion

74

Figure 2-17 shows the OCI Console VCN subnet creation wizard.

Figure 2-17. Creating VCN subnet creation wizard in the OCI Console

CHapTer 2 Building Your FirST Cloud appliCaTion

75

There are two types of subnets.

• A public subnet lets you assign public IP addresses to compute

instances that have been provisioned in this subnet. You can still

create compute instances with no public IP address in a public

subnet.

• A private subnet does not allow you to you assign public IP

addresses to compute instances that have been provisioned in this

subnet. These instances can use different means to communicate

with the Internet and other networks. You’ll learn more about that in

Chapter 6.

 Compute Instance
The time has come to provision our first compute instance in Oracle Cloud

Infrastructure. During the planning phase, which was described earlier in this chapter,

we decided to use the smallest virtual machine shape, which is VM.Standard2.1. We also

chose to use the newest available version of Oracle Linux 7. At the time of writing, this is

Oracle Linux 7.6, but you may see newer minor versions as well. At the moment, there

should be no compute instances in your learning compartment. Figure 2-18 shows an

empty list in the Instances view in the OCI Console.

Figure 2-18. Viewing OCI Console instances

CHapTer 2 Building Your FirST Cloud appliCaTion

76

Even if you automate the entire startup procedure of a particular cloud-based virtual

machine, you may still want to have the option to connect to the command line on that

host remotely. In the case of Linux-based machines, like Oracle Linux, we are going to

use SSH public key authentication. If you have worked primarily with Windows-based

hosts, it might be the first time you hear about SSH. The principle is pretty simple. You

generate a pair of related files, so-called keys. One is called a private key, and the other

is called a public key. You upload the public key to one or more Linux machines in the

cloud. To authenticate your remote terminal connection, you need the private key. The

compute instance creation wizard in the OCI Console gives us an opportunity to upload

a public key.

Note The code snippets from this book have been tested on macoS and
Windows Subsystem for linux. Moreover, all commands should work on major
linux distributions. if you are using Windows and do not want to use Windows
Subsystem for linux, you can always run linux on a VM. Furthermore, the majority
of code snippets may also work in git Bash on Windows.

If you would like to create a new SSH keypair by employing the RSA algorithm, just

execute this command:

$ ssh-keygen -t rsa -b 2048 -C michal@vm -f ~/oci_id_rsa

You can optionally secure your private key with a password. Each time you use the

private key, you will be prompted to give a password. There will be two files generated.

• oci_id_rsa, which is a private key.

• oci_id_rsa.pub, which is a public key. You will upload this file when

you create an instance in the OCI Console.

Figure 2-19 shows an SSH keypair creation.

CHapTer 2 Building Your FirST Cloud appliCaTion

77

We would like our Oracle Linux compute instance to be able to serve UUID service

clients as soon as the machine is up and running. We do not want to perform neither

manual installations nor configurations. We are going to leverage the cloud-init package

that is preinstalled on our compute instance already with the base operating system

image. The role of cloud-init is to perform an early initialization of a cloud instance

during its first boot. Your role is to upload a user data file in one of the supported formats

during instance creation. Listing 2-3 shows cloud-init user data in cloud-config YAML

format. You will find the cloud-config file in the git/chapter02/cloud-init directory.

Listing 2-3. vm.config.yaml

#cloud-config

yum_repos:

 ol7_developer_EPEL:

 name: Oracle Linux $releasever Developement Packages ($basearch)

 baseurl: http://yum.oracle.com/repo/OracleLinux/OL7/developer_

EPEL/$basearch/

Figure 2-19. Creating an SSH keypair

CHapTer 2 Building Your FirST Cloud appliCaTion

78

 enabled: true

 gpgcheck: true

 gpgkey: file:///etc/pki/rpm-gpg/RPM-GPG-KEY-oracle

package_upgrade: true

packages:

 - tree

 - wget

 - python36

 - python36-pip

write_files:

- content: |

 [Unit]

 Description = Launching UUID Service API

 After = network.target

 [Service]

 Environment=FLASK_APP=/home/opc/uuidservice/app.py

 Environment=LC_ALL=en_US.utf8

 Environment=LANG=en_US.utf8

 ExecStart = /home/opc/uuidservice/venv/bin/flask run --host=0.0.0.0

 User = opc

 [Install]

 WantedBy = multi-user.target

 path: /etc/systemd/system/uuidservice.service

runcmd:

 - ["mkdir", "-p", "/home/opc/uuidservice/venv"]

 - ["chown", "opc:opc", "/home/opc/uuidservice"]

 - ["python3", "-m", "venv", "/home/opc/uuidservice/venv"]

 - ["/home/opc/uuidservice/venv/bin/python3", "-m", "pip", "install",

"--upgrade", "pip"]

 - ["/home/opc/uuidservice/venv/bin/python3", "-m", "pip", "install",

"flask"]

 - ["wget", "-qO", "/home/opc/uuidservice/app.py", "https://raw.

githubusercontent.com/mtjakobczyk/oci-book/master/chapter02/

uuid-service/app.py "]

 - ["firewall-offline-cmd", "--add-port=5000/tcp"]

 - ["systemctl", "restart", "firewalld"]

CHapTer 2 Building Your FirST Cloud appliCaTion

79

 - ["ln", "-s", "/etc/systemd/system/uuidservice.service", "/etc/systemd/

system/multi-user.target.wants/uuidservice.service"]

 - ["systemctl", "enable", "uuidservice.service"]

 - ["systemctl", "start", "uuidservice.service"]

final_message: "UUID Service API node is running, after $UPTIME seconds"

You will upload this file to the OCI Console instance creation wizard in a few

moments. First, let’s understand what it does. If you look closer at Listing 2-3, you will

discover that it consists of six named sections.

• yum_repos defines a new repository that will be added to Yum.

• package_upgrade triggers a system-wide package update.

• packages lists new packages that will be installed on the machine.

• write_files creates a new file using provided content at the given

path.

• runcmd executes commands in a provided sequence.

• final_message prints a message when the processing finishes.

But what does our cloud configuration actually do in more detail? First, it adds the

Oracle Linux EPEL repository to Yum. This repository contains Python 3, which we

need to run our Python-based UUID service. Cloud-init will perform a system-wide

package upgrade and install not only Python 3 but also the wget and tree utilities.

Another interesting thing is the write_files section, which, in our case, creates a new

systemd unit file. The file content is created in such way to run the UUID service as a

systemd service. In this way, we are able to follow a standardized approach to running

applications as operating system services in Linux. Last but not least, the runcmd section

runs a series of commands. First directories for a new Python virtual environment are

created, and the virtual environment alone is generated using the Python 3 venv module.

Next, already inside the virtual environment, we upgrade Package Installer for Python

(pip) and use it to install Flask. The subsequent steps use the wget utility to download

the UUID service code from the GitHub repository related to this book and open port

5000 in the operating system firewall. The final three commands effectively link, enable,

and start the systemd service. In this way, the UUID service operates as an operating

system service and is started on each restart.

CHapTer 2 Building Your FirST Cloud appliCaTion

80

You may wonder why are the commands are specified as arrays. There are two ways

commands are run by cloud-init. The command will be executed as a new process,

directly using an operating system call, if wrapped into an array like this:

runcmd:

 - ["mkdir", "-p", "/home/opc/uuidservice/venv"]

The command will be written to a file first and then passed to the operating system

shell for processing, if simply written as a string like this:

runcmd:

 - mkdir -p /home/opc/uuidservice/venv

While the first way may be considered a bit faster from a performance point of view,

only the latter will allow you to combine multiple commands by using piping like this:

runcmd:

 - 'echo $(date) | tee /home/opc/datemarker'

It is fine to mix both styles in the same runcmd section.

Tip instead of copying the user data file straight from listing 2-3, i recommend
that you clone the git repository associated with this book from my gitHub account
and use the cloud-config user data file you will find at oci-book/chapter02/
cloud-init. in this way, you will be able to enjoy the code that is always up-to-
date, in case something changes in the future.

Now, please prepare the two files we’ve just discussed.

• Public SSH key

• User data file for the UUID service

We are ready to launch the instance. This is how you create a new compute instance

using the OCI Console:

 1. Go to Menu ➤ Compute ➤ Instances.

 2. Make sure that the Sandbox compartment is selected.

 3. Click Create Instance.

CHapTer 2 Building Your FirST Cloud appliCaTion

81

 4. Name your instance as uuid-1.

 5. Click Show Shape, Network and Storage Options.

 6. Set the image source to the newest Oracle Linux base image, such

as Oracle Linux 7.6 or newer.

 7. Provide the required details:

 a. Select the first availability domain in your region.

 b. Set the instance type to Virtual Machine.

 c. Select VM.Standard2.1 as your instance shape.

 8. In the Configure Networking section, as shown in Figure 2-22:

 a. Make sure your new a-net subnet is selected.

 b. Check Assign a Public IP Address.

 9. In the Add SSH Key section:

 a. Choose the newly generated public key (oci_id_rsa.pub), as shown in

Figure 2-21.

 10. Click Show Advanced Options.

 11. On the Management tab under Advanced Options, as shown in

Figure 2-23:

 a. Choose the user data file shown in Listing 2-3. You will always find the

latest version of the user data file on my GitHub account at https://raw.

githubusercontent.com/mtjakobczyk/oci-book/master/chapter02/

cloud- init/vm.config.yaml.

 12. On the Networking tab under Advanced Options, as shown in

Figure 2-24:

 a. Set Private IP Address to 192.168.1.2.

 b. Set Hostname to uuid1.

 13. Click Create.

Figure 2-20 shows the instance creation view in the OCI Console.

CHapTer 2 Building Your FirST Cloud appliCaTion

https://raw.githubusercontent.com/mtjakobczyk/oci-book/master/chapter02/cloud-init/vm.config.yaml
https://raw.githubusercontent.com/mtjakobczyk/oci-book/master/chapter02/cloud-init/vm.config.yaml
https://raw.githubusercontent.com/mtjakobczyk/oci-book/master/chapter02/cloud-init/vm.config.yaml

82

Figure 2-20. Creating a new compute instance in the OCI Console

CHapTer 2 Building Your FirST Cloud appliCaTion

83

Figure 2-21 shows the SSH key upload section in the OCI Console instance creation

wizard.

Figure 2-22 shows the networking section in the OCI Console instance creation

wizard.

Figure 2-21. Uploading an SSH public key in the instance creation wizard

Figure 2-22. Configuring networking in the instance creation wizard

CHapTer 2 Building Your FirST Cloud appliCaTion

84

Figure 2-23 shows the user data upload section in the OCI Console instance creation

wizard.

Figure 2-24 shows the advanced networking section in the OCI Console instance

creation wizard.

Figure 2-23. Uploading user data in the OCI Console instance creation wizard

Figure 2-24. Configuring advanced networking in the instance creation wizard

CHapTer 2 Building Your FirST Cloud appliCaTion

85

It usually takes about one minute to provision this shape and the base image of a

compute instance. We’ve selected the Assign Public IP Address checkbox; therefore, the

primary vNIC attached to your instance will get a public IP address assigned from the

Oracle Cloud pool of public IPv4 addresses. You will be able to connect to the instance

using this IP address as long as the subnet’s security list rules allow the particular traffic.

Private IP addresses are used within the VCN to enable local communication between

compute instances.

Figure 2-25 shows compute instance provisioning in the OCI Console.

Figure 2-25. Provisioning of a compute instance in the OCI Console

Figure 2-26 shows a running compute instance in the OCI Console.

CHapTer 2 Building Your FirST Cloud appliCaTion

86

 Testing the Application
Cloud solutions are often designed and automated in such a way that there is no need to

run any additional initialization scripts manually in a terminal. You deploy your solution

in a ready-to-go state from the beginning using a combination of custom image and user

data that basically contains the initialization instructions. The same applies to our UUID

service. As soon as the instance’s boot process has been completed and cloud-init has

executed all the user data instructions, the API is up and running.

 SSH Connection
Yet, let me make an exception here. I would like to show you around the instance, and

there is no better way than using the operating system shell. Let’s use SSH to connect to

the uuid-1 compute instance remotely. You will find the instance’s public IP in Instance

Details, as shown in Figure 2-26. In my case, it is 130.61.91.155. Even though you will

be using key-based authentication, a username for which you are establishing the

Figure 2-26. Viewing a running compute instance in the OCI Console

CHapTer 2 Building Your FirST Cloud appliCaTion

87

connection is still expected. For Oracle Linux and CentOS, please use the opc username.

For Ubuntu, please use the ubuntu username.

$ UUID1_INSTANCE=130.61.91.155

$ ssh -i ~/oci_id_rsa opc@$UUID1_INSTANCE

One more thing, do not be surprised if you are not able to connect to the terminal

immediately after seeing the instance state moving from “provisioning” to “running.” It

can still take a few more seconds to start the SSH daemon, although an instance is said to

be “running.”

Tip if you are on Windows, i recommend using Windows Subsystem for linux,
linux guest VM, or git Bash to get the same ssh experience as if you were using a
uniX-based platform.

Figure 2-27 shows how to connect to a remote compute instance.

Congratulations, you’ve just entered the cloud space.

 Waiting for cloud-init
Before you take any action, we are going to find out whether the user data instructions

have been completed. At the bottom of Listing 2-3, you will find final message. As the

name says, this is the last instruction that is processed by cloud-init. Figure 2-28 shows

the easiest way to find the message (“UUID Service API node is running”) in the log

(/var/log/cloud-init.log). Some cloud-init instructions can last a while, especially

if they download or update software from remote repositories. In our case, it took four

minutes to finish all the initialization steps. What does this mean? If you cannot see

this message, you need to wait a bit. You can use the tail -f command and watch the

Figure 2-27. Connecting to a compute instance over SSH

CHapTer 2 Building Your FirST Cloud appliCaTion

88

progress by observing the /var/log/cloud-init.log file. Depending on the number of

packages that are being updated, this operation can last a few minutes. Do not continue

until you see this message in the log, as presented in Figure 2-28.

[opc@uuid1]$ sudo cat /var/log/cloud-init.log | grep "node is running"

Is our service really running? Seeing is believing. You can run this command to

double-check the systemd service status:

[opc@uuid1]$ sudo systemctl status uuidservice.service

Figure 2-29 shows the expected output.

Is the service really listening on port 5000? Check it with this command:

[opc@uuid1]$ ss -nltp

Figure 2-30 shows the expected output.

Figure 2-28. Connecting to a compute instance over SSH

Figure 2-29. Expected systemd service status for the UUID service

Figure 2-30. Viewing the port on which the UUID service is listening for connections

CHapTer 2 Building Your FirST Cloud appliCaTion

89

It seems our first cloud application is indeed running.

 Open Ports
Typical problems you may need to troubleshoot on your future cloud projects are related

to VCN security rules and operating system firewall rules. It is not enough to add a VCN

security rule to the security list that is used by a subnet to which a particular compute

instance is attached. You also need to open a required port in the operating system

firewall. If you look at the user data we’ve uploaded to the uuid-1 instance, you will

clearly see that we add a rule that opens port 5000. You can run this command in the

instance’s shell to confirm the rule has been created:

[opc@uuid1]$ sudo firewall-cmd --list-ports

Figure 2-31 shows the expected output.

Figure 2-31. Listing open ports on uuid-1

You can now disconnect from the instance by issuing the exit command.

 API Test
Finally! It is time to perform a simple smoke test to see whether the UUID service is

truly available in the cloud. We are dealing with a REST API that contains only one

resource, identifiers, and supports only one method, GET. It cannot be easier. In our

first attempt, we are going to use the curl command. It is available on the Mac/Linux

console, Windows Subsystem for Linux, and GitBash on Windows. Please disconnect

from the cloud instance and issue the following command, adapting it to include the

public IP your instance has been attached to:

$ curl -is $UUID1_INSTANCE:5000/identifiers

You should see something like in Figure 2-32. In addition to the IP address, the uuid

element will be different because it is by definition unique, isn’t it?

CHapTer 2 Building Your FirST Cloud appliCaTion

90

If you prefer graphical tools like Postman, you will see something like in Figure 2-33.

Well done! You’ve reached the point in which the application is running and has been

successfully tested. To sum up, we’ve managed to provision a new VCN with an Internet

gateway, create a new public subnet, and add a new route rule to direct the outbound

traffic via the Internet gateway and security rule to allow incoming TCP traffic to port

5000 on any compute instance to which this rule applies. On its first boot, the compute

instance downloaded all the required packages, created the Python virtual environment,

downloaded the UUID service code from GitHub, and installed a new systemd service for

the application. Figure 2-34 shows an infrastructure diagram of what we’ve built.

Figure 2-32. Testing the UUID service API using curl

Figure 2-33. Testing the UUID API using Postman

CHapTer 2 Building Your FirST Cloud appliCaTion

91

In the next section, you will manually scale out the API. What does this mean? You

will create a second instance in another availability domain and create a load balancer

on top of the two instances. In this way, the setup will feature fault tolerance.

Figure 2-34. Single UUID service API node infrastructure diagram

CHapTer 2 Building Your FirST Cloud appliCaTion

92

 Scaling Out
Scaling out an application means adding more instances usually of the same type. This

is another term that describes horizontal scaling. There are two reasons why you would

want to scale an application out.

• Increasing processing throughput capacity

• Adding fault tolerance

One instance is never enough to provide a reliable cloud API. However, something

can still go wrong, annihilating your lonely application node. If you have more nodes

that perform the same duty and are distributed across various data centers, you will

probably never experience a full outage if a single data center fails. Moreover, if you have

more instances of the same type, you can process a greater number of requests parallelly.

It’s as simple as that.

Figure 2-35 presents horizontal scaling.

Figure 2-35. Horizontally scaling an application

One of the fundamental cloud concepts is autoscaling. Autoscaling takes place

when the cloud control plane dynamically scales an application horizontally by adding

or removing instance nodes based on changing metrics such as request count or CPU

utilization. We will discuss autoscaling in more detail later in the book. In this section, I

will show you how to manually scale an application out by using custom images.

 Custom Image
An image is a template that specifies the operating system and any additional software

that has to be preinstalled during the instance launch. Oracle Cloud Infrastructure

comes with a few base images with various operating systems. You can provision an

instance based on a selected operating system image, install the software of your choice,

CHapTer 2 Building Your FirST Cloud appliCaTion

93

perform some additional configuration, and create a new custom image based on this

instance. In this way, you will be able to reuse your custom software stack configuration

to launch other compute instances.

If you have a running compute instance, you are able to create a new custom image

based on that instance. Figure 2-36 shows operations you can issue on a compute

instance. One of them is Create Custom Image.

This is how you create a new custom image based on an existing compute instance:

 1. Go to Menu ➤ Compute ➤ Instances.

 2. Make sure that the Sandbox compartment is selected.

 3. Click the name of our compute instance.

 4. Click Actions ➤ Create Custom Image to open a custom image wizard.

 5. Provide a name for your new custom image.

 6. Click Create Custom Image.

Tip Consider suffixing your custom image name with the name of the original
image used to create the custom image.

Figure 2-37 shows the custom image creation wizard in the OCI Console.

Figure 2-36. Available compute instance operations

CHapTer 2 Building Your FirST Cloud appliCaTion

94

If you decide to create a custom image based on a particular compute instance,

this instance will be taken offline for the time it takes to build the image. As soon as the

image has been created, the compute instance will be started again.

Figure 2-38 shows the compute instance that serves as a base for a new custom

image while the image is created.

Figure 2-37. Viewing the custom image creation wizard in the OCI Console

Figure 2-38. Creating a custom image in the OCI Console instances list

CHapTer 2 Building Your FirST Cloud appliCaTion

95

Figure 2-39 shows a new custom image while it is being created.

We are going to use the newly created custom image to launch a second instance that

runs the UUID service API. To achieve fault tolerance, we will deploy the second node

in a different availability domain. Let’s create a new subnet in the second availability

domain exactly as we planned.

 Subnet in a Different AD
We will follow the same sequence of steps we did a few sections earlier when we created

the first subnet. To keep things simple, we will reuse the same route table and security

list that are in use by the first subnet.

This is how you create a new VCN subnet using the OCI Console:

 1. Go to Menu ➤ Networking ➤ Virtual Cloud Networks.

 2. Make sure that the Sandbox compartment is selected.

 3. Click the name of your VCN.

 4. Click Subnets in the Resources menu.

 5. Click Create Subnet.

 6. Provide the required values:

 a. Enter b-net as a display name.

 b. Choose Availability Domain-specific Subnet Type.

Figure 2-39. Creating a custom image in the OCI Console images list

CHapTer 2 Building Your FirST Cloud appliCaTion

96

 c. Select the second availability domain (suffixed AD-2) in your region.

 d. Place 192.168.1.16/28 as the CIDR block.

 e. Make sure that the default route table is chosen.

 f. Select the Public Subnet option.

 g. Select Use DNS Hostnames in this subnet.

 h. Use a short one-character label b as a DNS label.

 i. Make sure that the default DHCP Options setting is chosen.

 j. Make sure that the default security list is chosen.

 7. Click Create.

At this stage, you should be able to see two subnets in two different availability

domains, as shown in Figure 2-40. Please note that each subnet resides in a different

availability domain.

Figure 2-40. Two subnets in two different ADs shown in the OCI Console

Now, we will create a second UUID service API instance in this newly created subnet.

 Second Compute Instance
The second compute instance will run the same systemd service that runs on the first

compute instance. This time, we won’t upload any user data because everything has

already been set up in the image we created from the first compute instance. Figure 2-41

shows the image selection screen and the choice you have to make this time.

CHapTer 2 Building Your FirST Cloud appliCaTion

97

This is how you create the second compute instance using the OCI Console:

 1. Go to Menu ➤ Compute ➤ Instances.

 2. Make sure that the Sandbox compartment is selected.

 3. Click Create Instance.

 4. Provide the required details:

 a. Name your instance uuid-2.

 b. Select the second availability domain in your region.

 c. Set the image source to the newly created custom image; in my case, its

name starts with UUID-API-Oracle-Linux-.

 d. Set the instance type to Virtual Machine.

 e. Select VM.Standard2.1 as your instance shape.

Figure 2-41. Choosing a custom image in the OCI Console

CHapTer 2 Building Your FirST Cloud appliCaTion

98

 5. In the Configure Networking section:

 a. Make sure your new b-net subnet is selected.

 b. Select Assign a Public IP Address.

 6. In the Add SSH Key section:

 a. Choose the public key (oci_id_rsa.pub), as shown in Figure 2-21.

 7. Click Show Advanced Options.

 8. On the Networking tab under Advanced Options, as shown in

Figure 2-24:

 a. Set Private IP Address to 192.168.1.18.

 b. Set Hostname to uuid2.

 9. Click Create.

Note in this case, there is no need to upload the cloud-config user data. The
custom image comes with the preinstalled uuid api service because it was created
based on the uuid-1 compute instance. leave the user data section empty.

Figure 2-42 shows the instance creation view in the OCI Console. Please note that

this time we are using the second availability domain and custom image.

CHapTer 2 Building Your FirST Cloud appliCaTion

99

Figure 2-42. Creating the second compute instance in the OCI Console

CHapTer 2 Building Your FirST Cloud appliCaTion

100

Figure 2-43 shows the advanced networking section.

As soon as you confirm the parameter choices for the second instance by clicking the

Create button in instance creation wizard in the OCI Console, the provisioning process

will begin. This time, the UUID service will be already preinstalled with the custom

image, and no long-running user data is involved. As a result, the second instance

should boot faster. Let’s wait until we see that the instance is running, as shown in

Figure 2-44.

Figure 2-43. Configuring advanced networking in OCI Console instance creation
wizard

CHapTer 2 Building Your FirST Cloud appliCaTion

101

You can now test the API on both nodes. Please remember to replace the public IP

addresses and use the ones that have been assigned to your instances in both cases.

$ UUID2_INSTANCE=130.61.23.13

$ curl $UUID1_INSTANCE:5000/identifiers

{

 "generator":"uuid1",

 "uuid":"bc85b59f-cf0f-4035-a730-c25111db00ec"

}

$ curl $UUID2_INSTANCE:5000/identifiers

{

 "generator":"uuid2",

 "uuid":"6eca06e0-65f2-444b-acb8-b9c46741dc72"

}

Figure 2-44. Viewing the second running compute instance in the OCI Console

CHapTer 2 Building Your FirST Cloud appliCaTion

102

Figure 2-45 shows that two instances are operative.

In this section, we deployed and tested the second node that runs our application.

Figure 2-46 presents the current application infrastructure using Oracle Cloud

Infrastructure notation.

Figure 2-45. Testing two nodes of the UUID service API

Figure 2-46. Two nodes of the UUID API on the infrastructure diagram

CHapTer 2 Building Your FirST Cloud appliCaTion

103

The current setup has one major pain point. The API consumers (in other words,

applications that invoke the API) have to explicitly specify the public IP address of a

particular virtual machine. With this approach, the more you scale the API out, the more

unrelated endpoints with different public IP addresses you produce. This is not the best way

to design a highly available solution. Luckily, we can change it by adding a load balancer.

 Load Balancer
A load balancer provides a single point of entry and traffic distribution to the active servers or

worker nodes. We are going to use an Internet-facing, so-called public load balancer that uses

a public floating IP to support the failover mechanism. This means that you launch a pair of

load balancer (LB) nodes, each in a different availability domain. At any given time, only one

LB node is active and forwards traffic to the UUID service API nodes. The second LB node

remains in Standby mode. If the active LB node fails, the standby LB node will detect this

situation and announce itself as the active node and the current IP address holder.

Figure 2-47 shows how a fault-tolerant public load balancer works.

Figure 2-47. Fault-tolerant public IP load balancer

A public load balancer requires two dedicated public subnets. We are going to create

them in the same VCN in which we host UUID service API nodes. This time, we will use a

new security list because the rules will differ from the default security list that we use for

our application node subnets.

Please create a new security list called lb-sl. This is how you create a new security

using the OCI Console:

 1. Go to Menu ➤ Networking ➤ Virtual Cloud Networks.

 2. Make sure that the Sandbox compartment is selected.

 3. Click the name of your VCN.

CHapTer 2 Building Your FirST Cloud appliCaTion

104

 4. Click Security Lists in the Resources menu.

 5. Click Create Security List.

 6. Give it a name: lb-sl.

 7. Create ingress rules as defined in Table 2-1. One rule has to be

stateless.

 8. Create egress rules as defined in Table 2-2. The rule has to be

stateless.

 9. Click Create Security List.

Table 2-1. Ingress Security Rules for Load Balancer Subnet

Type Protocol Source Destination

1 Stateful TCp 0.0.0.0/0

all ports

port 80

2 Stateless TCp 192.168.1.0/24

port 5000

all ports

Table 2-2. Egress Security Rules for Load Balancer Subnet

Type Protocol Source Destination

1 Stateless TCp all ports 192.168.1.0/24

port 5000

CHapTer 2 Building Your FirST Cloud appliCaTion

105

Figure 2-48. Ingress rules for the load balancer subnets

Figure 2-48 shows the ingress rules.

CHapTer 2 Building Your FirST Cloud appliCaTion

106

Figure 2-49 shows the expected egress rule.

We are now going to create two subnets in two different availability domains for a

fault-tolerant public load balancer pair of nodes.

 1. Go to Menu ➤ Networking ➤ Virtual Cloud Networks.

 2. Make sure that the Sandbox compartment is selected.

 3. Click the name of your VCN.

 4. Click Subnets in the Resources menu.

 5. Add two new public subnets, as defined in Table 2-3.

Figure 2-49. Egress rule for the load balancer subnet

Table 2-3. Load Balancer Subnets

Name AD CIDR Block DNS Label Security List

c-net 1 192.168.1.32/29 c lb-sl

d-net 2 192.168.1.40/29 d lb-sl

CHapTer 2 Building Your FirST Cloud appliCaTion

107

We’ve just prepared the networking setup for our highly available public load

balancer. Altogether with UUID API subnets, you should see four subnets in your VCN,

as shown in Figure 2-50.

Figure 2-50. Subnets in VCN

As a matter of fact, the load balancing capability is delivered by a set of cooperating

OCI resources encapsulated by a load balancer resource. Compute nodes or private IP

addresses to which the requests are forwarded by the load balancer are considered as

backends and grouped together into a backend set resource. A backend set is more than

just a simple grouping of backends because it also defines the health check policy. The

health check policy decides how the backends are judge to be operational or failing.

Finally, a listener is required to accept the ingress traffic; otherwise, requests wouldn’t

be able to flow into the public load balancer from the Internet. Figure 2-51 shows a

conceptual composition of OCI resources for the load balancer.

Figure 2-51. Load balancer OCI resources

CHapTer 2 Building Your FirST Cloud appliCaTion

108

Having outlined the resources that a load balancer is composed of, let’s create them.

When using the OCI Console, you can leverage a three-step all-in-one load balancer

creation wizard. This is how you create a new load balancer resource:

 1. Go to Menu ➤ Networking ➤ Load Balancers.

 2. Make sure that the Sandbox compartment is selected.

 3. Click Create Load Balancer.

 4. In the Add Details step, provide the configuration, as shown in

Figure 2-52:

 a. Name your load balancer uuid-lb.

 b. Set the visibility to Public.

 c. Select the Small shape: 100Mbps.

 d. Select Public Load Balancer.

 e. Set the VCN to the uuid-vcn VCN.

 f. Choose the load balancer subnets: c-net and d-net.

 5. Click Next Step.

 6. In the Choose Backends step, provide the configuration, as shown in

Figure 2-53:

 a. Make sure Weighted Round Robin is selected.

 b. Click Add Backends and select both compute instances.

 c. For each backend instance, change the port to 5000.

 7. Still in the Choose Backends step, provide the health check policy

configuration, as shown in Figure 2-54:

 a. Make sure the protocol is set to HTTP.

 b. Set the port to 5000.

 c. Set the URL path to /identifiers.

 d. Make sure the status code is set to 200.

 8. Click Next Step.

CHapTer 2 Building Your FirST Cloud appliCaTion

109

 9. In the Configure Listener step, provide the configuration, as

shown in Figure 2-55:

 a. Choose the HTTP protocol and set the port to 80.

 b. Name the listener uuid-lb-listener.

 10. Click Create Load Balancer.

Figure 2-52 shows the expected load balancer configuration in the Load Balancer

Add Details step of the load balancer creation wizard in the OCI Console.

Figure 2-52. Add Details step in the OCI console load balancer wizard

Figure 2-53 shows the first part of the expected load balancer configuration in the

Choose Backends step of the load balancer creation wizard in the OCI Console.

CHapTer 2 Building Your FirST Cloud appliCaTion

110

Figure 2-54 shows the second part of the expected load balancer configuration in the

Choose Backends step of the load balancer creation wizard in the OCI Console.

Figure 2-53. Choose Backends step in the OCI Console load balancer wizard

CHapTer 2 Building Your FirST Cloud appliCaTion

111

Figure 2-55 shows the expected load balancer backend set configuration in the

Configure Listener step of the load balancer creation wizard in the OCI Console.

Figure 2-54. Health check settings in the Choose Backends step

Figure 2-55. Configure Listener step in the OCI Console load balancer wizard

Oracle Cloud Infrastructure will now provision a new public load balancer and

attach a public IP address from a pool of Oracle Cloud addresses. We have to wait until

the provisioning action has been completed to see something like in Figure 2-56.

CHapTer 2 Building Your FirST Cloud appliCaTion

112

The health check configuration we’ve defined is responsible for overseeing and

detecting whether all of the registered load balancing backends are operating as expected.

The UUID service has been implemented as a simple REST API. REST APIs leverage HTTP

standard methods to provide CRUD operations over the API-managed resources. This is

why the most natural way to perform a REST API health check is to test one of its resources

using HTTP GET. The health check policy, which we have just configured, will send HTTP

GET /identifiers requests every 10 seconds to each backend server. If it does not receive

an HTTP 200 OK response within three seconds, it will retry two times and mark the node

as unavailable. After a load balancer has been provisioned, it can take a few moments for

the load balancer to confirm that the backends are healthy.

Tip if you are observing the unknown state for a prolonged period of time, do
not worry, but move on to testing the load balancer. in some cases, after the load
balancer launches, it can take minutes until the load balancer moves from the
unknown state to oK.

Figure 2-56. Viewing load balancer information in the OCI Console

CHapTer 2 Building Your FirST Cloud appliCaTion

113

If needed, you can check the state of each individual backend, as shown in Figure 2- 57.

To do so, follow these steps:

 1. Go to Menu ➤ Networking ➤ Load Balancers.

 2. Click the name of your load balancer.

 3. In the Resources section, click Backend Sets.

 4. Click the name of the backend set.

 5. In the Resources section, click Backends.

If you should find one of the backends in a Critical state, follow this checklist to

troubleshoot the issue:

• The target compute node is running.

• The UUID Service systemd service is started.

• The operating system firewall accepts connections on port 5000.

• There is an ingress stateful rule in the default security list that allows

the incoming traffic to port 5000.

• The rules in the load balancer’s subnet security list are correct.

• The load balancer set backends are properly defined.

• The load balancer backend set health check configuration is correct.

Figure 2-57. Viewing backend health flags in the OCI Console

CHapTer 2 Building Your FirST Cloud appliCaTion

114

All in all, after a while, you will be able to perform the final test for this chapter. To

do so, you need to identify the public IP address your load balancer has been given

from the Oracle Cloud address pool. In my case, it is 132.145.240.240. When you send

a few requests to the /identifiers resource on port 80 of your load balancer, they will

be evenly routed in a round-robin manner to the first (uuid-1) and second (uuid-2)

instances of the UUID service API. Every time you send a request to your load balancer,

it is interchangeably served by one of the two UUID service instances, as proven by the

generator JSON element in each response.

$ LB_INSTANCE=132.145.240.101

$ curl $LB_INSTANCE:80/identifiers

{

"generator":"uuid1",

"uuid":"709f6aac-0720-461a-9fd3-732748253bca"

}

$ curl $LB_INSTANCE:80/identifiers

{

"generator":"uuid2",

"uuid":"cfe329bd-cd2c-49a6-ae4f-29f23bf5d2fe"

}

$ curl $LB_INSTANCE:80/identifiers

{

"generator":"uuid1",

"uuid":"e22b5858-e70f-46ab-bd16-0da3d55aca73"

}

$ curl $LB_INSTANCE:80/identifiers

{

"generator":"uuid2",

"uuid":"1c9662d9-1426-4e2d-bae3-bd4207dbd73b"

}

We have completed the exercise. Before we move on, let’s terminate the cloud

resources. You can now terminate all resources you’ve created in this chapter, excluding

the learning compartment that we are going to use in the next chapters.

CHapTer 2 Building Your FirST Cloud appliCaTion

115

 Cleanup
To avoid unnecessary costs or trial credit consumption, no matter how low they are, let’s

terminate the resources we’ve created in this chapter. Some resources depend on other

resources; therefore, it is important to stick to the required sequence when you delete

them. This won’t be a problem in future chapters because in many cases the automation

will do it for us in one shot. In this chapter, however, we are doing everything manually in

the OCI Console, so we have to follow these steps:

 1. Go to Menu ➤ Networking ➤ Load Balancers.

 2. Make sure that the Sandbox compartment is selected.

 3. Click the three-dot menu, click Terminate, and wait until the

resource is removed.

Figure 2-58 shows how to terminate a load balancer.

Figure 2-58. Terminating a load balancer in the OCI Console

Now, in a similar way, use the OCI Console to terminate (or delete) the remaining

resources.

• Both compute instances (Menu ➤ Compute ➤ Instances)

• Custom image (Menu ➤ Compute ➤ Custom Images)

• VCN with associated networking resources

Tip When you terminate a compute instance, make sure you permanently delete
the boot volume. if you forget to do so, you can always delete an abandoned boot
volume later in Compute ➤ Boot Volumes.

This concludes the exercise in this chapter.

CHapTer 2 Building Your FirST Cloud appliCaTion

116

 Summary
In this chapter, I drove you through the process of planning and running a simple

cloud application on Oracle Cloud Infrastructure. First, we spent some time analyzing

the application design and outlining the required cloud infrastructure resources.

Subsequently, we used the OCI Console to provision each cloud resource step by step.

The application itself was built and run on the instance by using cloud-init-powered

automation. Next, we scaled the application out and added a public load balancer to

evenly distribute the load to two compute nodes that host the application. At the end, I

showed you how to perform a cleanup and remove the resources.

You may get the impression that the exercise in this chapter consisted of an

enormous number of manual steps. Well, I warned you that I wanted to show you

the manual way and teach you how to handle the OCI Console. The next chapter will

introduce the OCI CLI and Terraform automation, and you will experience how to

manage your cloud infrastructure as code faster. Read on.

CHapTer 2 Building Your FirST Cloud appliCaTion

117
© Michał Tomasz Jakóbczyk 2020
M. T. Jakóbczyk, Practical Oracle Cloud Infrastructure, https://doi.org/10.1007/978-1-4842-5506-3_3

CHAPTER 3

Automating Cloud
Infrastructure
Cloud computing cannot exist without automation. The entire concept of the rapid self-

provisioning of pooled cloud resources (compute instances, storage, virtual networking,

and many others) is built on an assumption that the whole provisioning process, from

the beginning to the end, is fully automated. Simply because there are no manual steps

involved, it is possible to represent the complete cloud infrastructure in the form of scripts

and templates that are used to remotely manage cloud resources. Figure 3-1 shows a mind

map of a few related operational characteristics that are enabled through the automation.

Figure 3-1. Automation

118

Scripts and templates can be treated as source code and stored in a version control

system like Git. This boosts team collaboration as well as leads to faster delivery of

enhancements and, as a consequence, problem resolution. New team members can

furthermore understand the infrastructure just by reading the code that is always

up-to-date, in contrast to the traditional documentation that can, as time goes by,

easily skew from the real state. You prepare the scripts and templates, which, during

execution, interact with the so-called cloud management plane through the interfaces

covered in the next section. The cloud management plane provisioning engine is already

automated by your cloud provider. It is responsible for creating, updating, and deleting

the resources in the cloud. Again, there are absolutely no manual steps throughout the

entire process. Everything considered together leads to the shortest provisioning time

possible, repeatability, and self-service.

You can and actually should go beyond automating the cloud infrastructure

management only. Cloud infrastructure is part of and, at the same time, a prerequisite

for your cloud-based solutions. You indeed run business or platform software on cloud

infrastructure. It makes therefore more sense to automate the entire solution delivery

process. Imagine your developer checks in an application code change that effectively

adds a new service. The service listens on a port that hasn’t been used until now. The

same commit can include an infrastructure script or template change that would add

a new security list to allow the inbound traffic on that port. The new code revision is

detected by the build server that creates the new security rule and reprovisions one

or more virtual machines or containers that host the service in the test environment.

Finally, the integration and regression tests are executed to assess the quality of the

change. In this way, a simple code change can produce a tested deployment running

in the cloud. This is called continuous delivery. The process does not need to end with

the test environment. Some use cases would benefit from releasing a limited number

of service instances in the newest version, known as a canary release, straight to the

production environment to evaluate their behavior under real-world conditions.

Automation is the key enabler for continuous delivery that can become an important

part of the DevOps culture in your organization. What does it mean, and what are its

benefits? Looking only at the name, the Dev part comes from the word development,

and the Ops part comes from the word operations. In the traditional model, developers

handled deliverables to the operations team whose members prepared the configuration

and deployed the artifacts to particular environments. This cascade often led to

misunderstandings and errors, causing the delivery process to be longer than it should be.

Chapter 3 automating Cloud infrastruCture

119

DevOps breaks this approach and blends both roles. Processes related to the field

of traditional operations are now fully automated and often triggered already by the

actions done by application developers. In a popular understanding, a person who

holds a DevOps role is responsible for building and maintaining the aforementioned

automation. Repeatability, which is a result of thorough automation, decreases the risk

of errors previously related to manual actions. Moreover, the time saved by automating

the recurring manual tasks can be used to enhance the insights into running systems

and provide better governance over the entire application landscape. The term DevOps

culture is actually broader and goes far beyond the scope of this book.

 Cloud Management Plane
To fulfill its duties, the cloud platform provides a set of secure interfaces you can

interact with to control your cloud assets. These interfaces, referenced also as APIs, are

your gateway to the cloud management plane, which is the engine that delivers cloud

resources based on physical and virtual equipment in data centers. Clients send requests

to API endpoints to remotely execute various operations in the cloud.

You need to remember that the cloud is by definition multitenant. Because manifold

users interact with the same set of interface endpoints, the engine is not only responsible

for managing and monitoring the cloud assets but also has to make sure that the

resources used by different tenants (cloud accounts) are properly isolated. Moreover, the

API is also responsible for protecting cloud assets from unauthorized access. This idea is

conceptually presented in Figure 3-2.

Figure 3-2. Cloud management plane and multitenancy

Chapter 3 automating Cloud infrastruCture

120

 Oracle Cloud Infrastructure API
The most common way for cloud providers to offer their cloud interfaces is in the

form of secure REST APIs. Cloud resources and their lifecycle events are represented

as REST resources and corresponding HTTP methods (GET, PUT, POST, DELETE). A

successfully authenticated and authorized client can order the cloud management plane

to perform an operation on one or more cloud resources on his behalf. This is done by

sending a properly formed request over HTTPS. The cloud management plane validates

and translates the request to a set of operations performed on virtual and/or physical

resources to accomplish the requested action.

How does it actually work in practice from a client’s point of view? Let’s take a quick

look at Listing 3-1, which presents a simplified API request that would eventually list

the details of a particular instance pool. To increase the clarity of this example, I’ve used

parameter placeholders for the OCID of the instance pool cloud resource ({ic-id}) and

the OCID of the compartment ({c-id}). In a real request, you would replace them with

the correct Oracle Cloud identifiers.

Listing 3-1. Simplified API Request

GET /20160918/instancePools/{ic-id}?compartmentId={c-id} HTTP/1.1

Host: iaas.eu-frankfurt-1.oraclecloud.com

Accept: application/json

Authorization: ...

The request shown in Listing 3-1 asks for the instance pool details of a specified

instance pool that exists within a given compartment. The first part of the REST resource,

/20160918, denotes the version of the Oracle Cloud Infrastructure API, while the second

segment, namely, instancePools, clearly indicates the type of cloud resource we are

dealing with.

The operation to fetch the instance pool details is performed in a synchronous

way, which means that the response will be delivered as soon as the results have been

collected. Listing 3-2 shows the corresponding response. Please note that I’ve shortened

the OCIDs and the request ID header to make the structure more readable.

Chapter 3 automating Cloud infrastruCture

121

Listing 3-2. Simplified API Response

HTTP/1.1 200 OK

Content-Type: application/json

Content-Length: 931

opc-request-id: /D8613...

{

 "id" : "ocid1.instancepool....",

 "compartmentId" : "ocid1.compartment....",

 "definedTags" : { },

 "displayName" : "instance-pool",

 "freeformTags" : { },

 "instanceConfigurationId" : "ocid1.instanceconfiguration....",

 "lifecycleState" : "RUNNING",

 "placementConfigurations" : [{

 "availabilityDomain" : "feDV:EU-FRANKFURT-1-AD-1",

 "primarySubnetId" : "ocid1.subnet...."

 }, {

 "availabilityDomain" : "feDV:EU-FRANKFURT-1-AD-2",

 "primarySubnetId" : "ocid1.subnet...."

 }],

 "size" : 4,

 "timeCreated" : "2018-12-21T18:47:29.767Z"

}

Depending on the type of the requested action, the cloud management plane

engine may perform either a synchronous or an asynchronous operation. Synchronous

operations result in blocking calls, which means that the client waits for the results that

are returned in the corresponding response. In the case of an asynchronous operation,

you would immediately receive a response that contains a work request ID you can use

to track the state of the requested operation. At the time of writing, three capabilities

support work requests and perform some operations in an asynchronous way.

• Container Engine for Kubernetes

• Object storage

• Load balancing

Chapter 3 automating Cloud infrastruCture

122

Using APIs for these three capabilities entails the need for careful design decisions

an API client has to make when implementing the procedural provisioning scripts.

This applies when using custom API calls, SDKs, and the CLI. Luckily, you do not need

to worry about this design aspect if you manage your infrastructure as code using the

declarative approach with Terraform.

The APIs are intended to deliver the richest set of operations that can be performed

on the cloud resources. In other words, if you cannot find an API resource for a particular

operation, the operation either is not supported at the moment or can be achieved

through a sequence of multiple API calls that perform more granular actions on cloud

assets.

Tip You can find the comprehensive reference of the available oracle Cloud
infrastructure rest apis at https://docs.cloud.oracle.com/iaas/api.

 Securing API Calls
You may wonder how secure the remote management of cloud resources is when using

REST APIs. Well, if it wasn’t secure, there would be no cloud computing I guess. There

are three aspects of API calls security we have to briefly discuss.

• Transport layer security

• Authentication

• Authorization

First, the data packets that travel through the public Internet over HTTPS are

encrypted. TLS 1.2 protocol mechanisms protect the communication from being

eavesdropped on or altered while on the way. This industry-standard protocol provides

transport layer security transparently, and no involvement from the cloud team is

required.

The enforcement of authentication, which is a way to validate who the request

sender really is, requires a different approach. Each request has to be signed using the

sender’s private key and the RSA-SHA256 algorithm. The signature is eventually included

within the request’s authorization header. Listing 3-3 shows the detailed structure of

the header, including placeholders for user- and tenancy-specific data.

Chapter 3 automating Cloud infrastruCture

https://docs.cloud.oracle.com/iaas/api

123

Listing 3-3. Authorization Header with Request Signature

Authorization: Signature version="1",keyId="{tenancy-ocid}/{user-ocid}/

{public-key-fingerprint}",algorithm="rsa-sha256",headers="(request-target)

date host",signature="{signature}"

To generate a signature, you first need to build a signing string that is composed

of the parts of the request including, but not limited to, a resource target, such as

/20160918/vcns, and a hash of a request payload, when present. The signing string

is then encrypted using the private key and gets encoded to text using the Base64

algorithm. Yes, it does sound a bit complex, but do not worry. You do not need to

perform these steps in your daily job on your own, unless you really want. You nearly

always use software development kit (SDK) for a particular language or specialized

provisioning tools (CLI, Terraform) that prepare the authorization header and invoke

the OCI API for you.

Not every successfully authenticated user should be allowed to perform a particular

operation. For example, if there are multiple projects maintained under the same cloud

account, you will probably prefer to keep the resources that belong to project A isolated

from project B users. Even for a single project, it may still make sense to limit some

access rights to specific sets of resources for particular groups of users. This will be the

task of the authorization function, which verifies what an authenticated user is really

entitled to do. In the next chapter, you will learn about identity and access management

users, groups, and policies that altogether let you configure the authorization

mechanisms for your cloud account.

At this stage, it is crucial to highlight that every API call is always made on behalf of

a named Oracle Cloud Infrastructure IAM user. For each request, in the authorization

header, a client declares a tenancy OCID, a user OCID, and a fingerprint of a public

key that has been uploaded to Oracle Cloud Infrastructure for this particular IAM

user. Moreover, the signature, which is also part of the header, is encrypted with the

corresponding private key. This all leads to the conclusion that you need to possess a

keypair, called an API signing keypair, before you sign the API requests. The public key

will have to be uploaded to Oracle Cloud Infrastructure and associated with a user of

your choice. In this way, OCI will know how to decrypt your request.

Chapter 3 automating Cloud infrastruCture

124

 API Signing Key
In this section, we are going to generate a new keypair that will serve as an API signing

keypair and upload the public key to Oracle Cloud Infrastructure under a particular IAM

user. In this way, we will empower anyone with the private key to leverage the OCI API

and manage OCI resources remotely on behalf of this IAM user. The private key will be

additionally secured with a password. Every time you try using the private key, you will

be prompted for password, unless you persist it in your local configuration.

Note the code snippets from this book have been tested on macos and
Windows subsystem for linux. moreover, all commands should work on major
linux distributions. if you are using Windows and do not want to use Windows
subsystem for linux, you can always run linux on a Vm. furthermore, the majority
of code snippets may also work in git Bash on Windows.

 Generate a Keypair

The API signing keypair must be an RSA keypair in PEM format. PEM format uses

human- readable characters, which makes it slightly easier to work with (especially

copying the public key) than when working with binary formats. We are going to use the

openssl program to generate a new keypair that consists of two related 2,048-bit keys:

one private to sign the request and one public to verify the genuineness of the request.

This is how you generate a new keypair using openssl that should be available out of the

box on your Linux, macOS, and Windows Subsystem for Linux:

$ mkdir ~/.apikeys

$ cd ~/.apikeys

$ openssl genrsa -out oci_api_pem -aes128 2048

Generating RSA private key, 2048 bit long modulus

.............+++

..+++

Chapter 3 automating Cloud infrastruCture

125

e is 65537 (0x10001)

Enter pass phrase for oci_api_pem:

Verifying - Enter pass phrase for oci_api_pem:

$ chmod go-rwx oci_api_pem

$ ls -l | grep pem | awk '{ print $1" "$9 }'

-rw------- oci_api_pem

$ openssl rsa -pubout -in oci_api_pem -out oci_api_pem.pub

Enter pass phrase for oci_api_pem:

writing RSA key

$ ls -l | grep pem | awk '{ print $1" "$9 }'

-rw------- oci_api_pem

-rw-r--r-- oci_api_pem.pub

It is recommended that you restrict the access permissions to your private key so that

only the file owner is entitled to read or amend the file. You can perform this operation

using the chmod command, as shown in the code snippet. At this stage, the keypair is

ready. Listing 3-4 shows the public key we’ve just generated.

Listing 3-4. API Signing Keypair Public Key

$ cat oci_api_pem.pub

-----BEGIN PUBLIC KEY-----

MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAy7QqyKkIM1UW0lBs3h04

OIxCNbAc1YpqLmd/ZQGwNFoC9L7kpkARjOTMQg/XY9VgFhTFwkhv/sP7aOwYZjVD

BMltp3e0Xzu1BGe4AQF3xL+euqZW9dBRlvZqb1ubEse4RnKDCWvYpqQS/vQU48TM

nRObefTsZH1xg2RfO2mFHuGEZhJKrVIjHTJvjisAIZg0dPaVD8Ee+julutCnDHcP

QWlfe2e4OtYvvki5Wwu5Uz4Zq6ZSf55oX25pDGyw/WB5oDFg4v6RsZ7kQZYTBsqA

gF7RnG+q5JnxFfuDvEZoU0sB5hRWujhhSZtE9FjU9UndMU5iaa8kNE6Ua3e0p4ZG

RwIDAQAB

-----END PUBLIC KEY-----

Chapter 3 automating Cloud infrastruCture

126

 Uploading the Public Key

We’ve reached the point when we need to decide on whose behalf the API requests

are sent. In other words, we have to select an existing IAM user and upload the public

key that will get associated with this user. If you are working with a new trial or PAYG

account, you are probably logged in as the default IAM user who represents the tenancy

owner and belongs, out of the box, to the Administrators group. This group will let you

perform all the exercises described in this chapter.

Tip if you are using some other iam user, given to you by your cloud team, who
isn’t a member of the Administrators group, please talk to your cloud team
admin to verify what kind of actions you are entitled to perform or jump to Chapter 4
to understand what the iam policies assigned to your iam group mean.

This is how you upload a public key using the OCI Console:

 1. Go to Menu ➤ Identity ➤ Users.

 2. Click the name of your tenancy administrator user.

 3. Click API Keys in the Resources menu.

 4. Click Add Public Key.

 5. Paste the public key.

 6. Click Add.

Figure 3-3 presents the OCI Console window, which you use to add a new public key

for an IAM user.

Chapter 3 automating Cloud infrastruCture

127

You can have up to three public API keys for each IAM user. The API will recognize

which is the right one to use for each incoming request based on a fingerprint of the

public key included in the authorization header of the request. The fingerprint is

displayed in the OCI Console, as shown in Figure 3-4.

Figure 3-3. Adding a public key in the OCI Console

Figure 3-4. Fingerprint of the public key

Chapter 3 automating Cloud infrastruCture

128

The user is allowed to perform only the operations on cloud resources that are

allowed by existing IAM policy statements for the group the user belongs to. You will

learn about them in the next chapter. For now, please make sure you will be using an

IAM user who belongs to a group that has tenancy administration rights, such as default

Administrators group; otherwise, some commands presented in the next sections may

not work.

 Preparing for SDK, CLI, and Terraform

If you’ve completed all the steps described in the “API Signing Key” section, you are

ready to begin automating cloud infrastructure management tasks. Let’s wrap up and list

the required details you will have to provide, at least once during the initial setup, when

coding your custom API calls based on the SDK for your favorite programming language

or, more often, running CLI scripts or provisioning infrastructure configuration with

Terraform. These are the details you should prepare or know where to find them:

• API Signing Keypair in PEM format:

• Public key

• Private key

• Fingerprint of the public key

• IAM User OCID, available under Menu ➤ Identity ➤ Users

• Tenancy OCID, available under Menu ➤ Administration ➤ Tenancy

Details

• Region Identifier, available under Menu ➤ Administration ➤ Region

Management on the Infrastructure Regions tab

We are now ready to discuss and apply the three most popular automation

techniques. We will talk about SDKs first.

Chapter 3 automating Cloud infrastruCture

129

Figure 3-5. SDK

 SDK
The OCI SDK is a library for a particular programming language that lets your software

interact with the Oracle Cloud Infrastructure cloud management plane. The SDK

exposes the OCI API calls as functions or methods that are easier to use and faster to

work with for a developer. In this way, custom logic that manages and monitors OCI

resources can be embedded in your applications. Figure 3-5 illustrates this concept.

At the time of writing, Oracle Cloud Infrastructure delivers four SDKs implemented

as open source projects.

• Python: https://github.com/oracle/oci-python-sdk

• Go: https://github.com/oracle/oci-go-sdk

• Java: https://github.com/oracle/oci-java-sdk

• Ruby: https://github.com/oracle/oci-ruby-sdk

If you needed an SDK for a different language, you could consider writing one on your

own. You would first implement the API request signing logic and start wrapping into

library functions or class methods these REST API calls that you need for your software.

Later, you could incrementally add support for further API resources. In reality, especially

in the age of microservices-oriented design and containers, there is little probability that

you would need to build a new SDK because you could implement groups of cooperating

microservices using different programming languages.

In this section, I am going to present the basics of the Python SDK for Oracle Cloud

Infrastructure.

Chapter 3 automating Cloud infrastruCture

https://github.com/oracle/oci-python-sdk
https://github.com/oracle/oci-go-sdk
https://github.com/oracle/oci-java-sdk
https://github.com/oracle/oci-ruby-sdk

130

 Installation
Because of historical reasons, Python is parallelly maintained in two major versions at the

moment: 2 and 3. The SDK works with both, but I recommend using the newest major

version as a best practice. I am going to use Python 3. Please check if Python 3 is already

present on the machine that you are using to work on the exercises from this book. If it

isn’t, please install it and choose the newest Python 3.x available for your platform.

Note the way you are going to install python depends on the operating system
you are using. please visit www.python.org for more details.

After a successful installation, you should be able to see something like this:

$ python3 --version

Python 3.7.2

Note the code snippets from this book were tested in the macos Console and
Windows subsystem for linux. all of the commands should easily work on all
major linux distributions. if you are using Windows, please run the exercises either
on a guest Vm with linux or on Windows subsystem for linux.

Out of the box, Python 3 comes with the venv module, which lets developers

create multiple virtual environments on a single machine. A virtual environment

maintains self-contained Python binaries and a library of Python modules that serve as

dependencies to your application. All modules installed using a dedicated, environment-

specific instance of Package Installer for Python (pip) will be stored within the virtual

environment’s file hierarchy. This is especially useful if you are working on multiple

projects and need to avoid module version conflicts. I am going to create a new virtual

environment called ocidev and activate it by sourcing the bin/activate file.

Tip i highly recommend you visit the git repository for this book: https://
github.com/mtjakobczyk/oci-book. each chapter comes with a dedicated
directory that holds the chapter’s README.md file. the file contains all the code
snippets in an easy-to-copy form.

Chapter 3 automating Cloud infrastruCture

http://www.python.org
https://github.com/mtjakobczyk/oci-book
https://github.com/mtjakobczyk/oci-book

131

This is how you do it on macOS or Linux:

$ python3 -m venv ocidev

$ ls -1 ocidev/bin/

activate

activate.csh

activate.fish

easy_install*
easy_install-3.7*
pip*
pip3*
pip3.7*
python@

python3@

$ source ocidev/bin/activate

(ocidev) $

You can see that the command prompt has changed to indicate the active virtual

environment. Each time you open a new Terminal session, you need to activate the

virtual environment so that variables are set to work with binaries and paths from the

subdirectories of the chosen virtual environment.

Tip the venv module is available only in python 3. if you still want to use
python 2, there are analogous packages that support virtual environments, for
example, virtualenv.

The Python SDK for Oracle Cloud Infrastructure is available as a module in the

Python Package Index (PyPI) repository. You can download the oci module using the

pip package management for Python, which is already included and can be found in

your virtual environment’s path. Let’s upgrade the pip utility before we download and

install the oci module.

(ocidev) $ python3 -m pip install --upgrade pip

Successfully installed pip-19.1.1

(ocidev) $ python3 -m pip --version

pip 19.1.1 from /Users/mjk/ocidev/lib/python3.7/site-packages/pip (python 3.7)

Chapter 3 automating Cloud infrastruCture

132

Now, I am going to use the pip freeze command to list the packages installed in this

particular virtual environment.

(ocidev) $ python3 -m pip freeze

As you can see, there are no packages in our virtual environment. It is time to change

this and install the Python SDK for Oracle Cloud Infrastructure.

(ocidev) $ python3 -m pip install oci

Successfully installed (...) oci-2.2.13 (...)

(ocidev) $ python3 -m pip freeze

asn1crypto==0.24.0

certifi==2019.3.9

cffi==1.12.3

configparser==3.7.4

cryptography==2.7

oci==2.2.13

pycparser==2.19

pyOpenSSL==19.0.0

python-dateutil==2.8.0

pytz==2019.1

six==1.12.0

(ocidev) $ deactivate

Together with the oci module, pip has installed its dependencies. Now, we need to

discuss how to prepare the configuration that will store the details used by the SDK while

signing the API requests.

 Configuration
The Python SDK for Oracle Cloud Infrastructure is just a Python module that delivers a

collection of several client classes with methods that invoke the OCI REST API to manage

various types of OCI resources, for example:

• oci.core.ComputeClient class methods are used to manage

compute instances.

• oci.core.VirtualNetworkClient class methods are used to manage

VCN-related resources.

Chapter 3 automating Cloud infrastruCture

133

• oci.load_balancer.LoadBalancerClient class methods are used to

manage load balancer resources.

As you create an instance object of a particular client class, you have to provide a

dictionary (a set of key-value pairs) that stores the API signing details for the SDK. The

following code snippet shows conceptually how it is done. Do not try executing these

commands because one of them is still incomplete:

$ source ocidev/bin/activate

(ocidev) $ python3

>>> config = dict([('tenancy', '...'), ('region', '...'), ('user', '...'),

('fingerprint', '...'), ('key_file', '...'), ('pass_phrase', '...')])

>>> import oci

>>> compute = oci.core.ComputeClient(config)

It is also possible to load the configuration from a config file. A config file will include

the details required for the SDK to be able to sign API requests it sends to the Oracle

Cloud Infrastructure REST API on behalf of a named IAM user. The default name for the

config file is config. The default location for the config file is the ~/.oci directory. The

file must have the permissions set in such a way that it is only the file owner who is able

to read the contents of the file. Listing 3-5 shows the structure of the config file.

Listing 3-5. Python SDK for OCI Config File

[DEFAULT]

tenancy=ocid1.tenancy.oc1..aa.........abcdef

region=eu-frankfurt-1

user=ocid1.user.oc1..aa.........ghijkl

fingerprint=12:78:5b:60:65:cf:dc:b1:04:fd:3d:31:2b:a7:88:12

key_file=/Users/mjk/.apikeys/oci_api_pem

pass_phrase=secret

A tenancy (tenancy) and an IAM user (user) have to be provided as valid OCIDs, while

the region (region) must use a region identifier, for example, eu-frankfurt-1. The key

file (key_file) should be the path to the private key in PEM format that belongs to the API

signing keypair whose public key you’ve uploaded and associated with the IAM user. The

private key password (pass_phrase) as well as the public key fingerprint (fingerprint) are

also stored in the config file. This is why it is crucial to set the proper permissions on the

config file to limit the visibility of its contents. You can store multiple named configuration

profiles in one config file. In our example, there is only the DEFAULT profile present.

Chapter 3 automating Cloud infrastruCture

134

I have prepared a template of the config file for you. You will find the template file

at this path: chapter03/1-sdk/config.template. Please copy and save it in the default

location as the ~/.oci/config file.

$ mkdir ~/.oci

$ cp ~/git/oci-book/chapter03/1-sdk/config.template ~/.oci/config

$ chmod go-rwx ~/.oci/config

$ ls -l ~/.oci

-rw------- 1 mjk staff 758B Jun 10 20:21 config

Now, adjust the properties and use the values that correspond to your environment.

You can use vi or any other text editor.

$ vi ~/.oci/config

Let’s activate the virtual environment and start the Python interpreter again. You can

use the oci.config.from_file function in the configuration associated with a named

profile. In our case, this will be the DEFAULT profile. Finally, you can test the creation of a

compute client class instance.

$ source ocidev/bin/activate

(ocidev) $ python3

>>> import oci

>>> config = oci.config.from_file("~/.oci/config","DEFAULT")

>>> compute = oci.core.ComputeClient(config)

>>> quit()

(ocidev) $ deactivate

$

 Using the SDK
As soon as you know how to prepare and load the configuration file, you are ready for the

first simple test. Let’s list the availability domains visible for your tenancy and the IAM

user you’ve chosen.

$ source ocidev/bin/activate

(ocidev) $ python3

>>> import oci

>>> config = oci.config.from_file("~/.oci/config","DEFAULT")

Chapter 3 automating Cloud infrastruCture

135

>>> identity = oci.identity.IdentityClient(config)

>>> ads_list = identity.list_availability_domains(config['tenancy']).data

>>> for ad in ads_list:

... print(ad.name)

...

feDV:EU-FRANKFURT-1-AD-1

feDV:EU-FRANKFURT-1-AD-2

feDV:EU-FRANKFURT-1-AD-3

Now, I will show you how to create a virtual cloud network in one of your non-root

compartments. Before you proceed, please write down the OCID of a non-root

compartment, such as Sandbox, in which you would like the VCN to be created. The

OCID can be found in the OCI Console under Identity ➤ Compartments, as explained

in the “Compartment” section in Chapter 2. To successfully test the script that follows,

please replace the value of the cid variable with the OCID of the Sandbox compartment.

>>> cid = "ocid1.compartment.oc1..aa.........gzwhsa"

>>> kwargs = { "cidr_block": "10.5.0.0/16", "display_name": "sdk-vcn",

"compartment_id": cid }

>>> create_vcn_details = oci.core.models.CreateVcnDetails(**kwargs)

>>> print(create_vcn_details)

{

 "cidr_block": "10.5.0.0/16",

 "compartment_id": "ocid1.compartment.oc1..aa.........gzwhsa",

 "defined_tags": null,

 "display_name": "sdk-vcn",

 "dns_label": null,

 "freeform_tags": null

}

>>> vcn = oci.core.VirtualNetworkClient(config)

>>> response = vcn.create_vcn(create_vcn_details)

>>> response.data

{

 "cidr_block": "10.5.0.0/16",

 "compartment_id": "ocid1.compartment.oc1..aa.........gzwhsa",

 "default_dhcp_options_id": "ocid1.dhcpoptions.oc1. ...",

 "default_route_table_id": "ocid1.routetable.oc1. ...",

Chapter 3 automating Cloud infrastruCture

136

 "default_security_list_id": "ocid1.securitylist.oc1. ...",

 "defined_tags": {},

 "display_name": "sdk-vcn",

 "dns_label": null,

 "freeform_tags": {},

 "id": "ocid1.vcn.oc1.eu-frankfurt-1.aa.........74vj5a",

 "lifecycle_state": "AVAILABLE",

 "time_created": "2019-06-13T20:56:53.200000+00:00",

 "vcn_domain_name": null

}

As a first step to creating a new VCN using the Python SDK for Oracle Cloud

Infrastructure, we prepared an instance of a model class CreateVcnDetails. Model class

objects are used to encapsulate the configuration parameters for the API calls done by

the instances of client classes. In our case, we instantiated the model class with just three

VCN resource parameters: the CIDR block, the display name, and an OCID of a target

compartment. Subsequently, we passed the CreateVcnDetails object as an argument to

the create_vcn method of the VirtualNetworkClient client class instance. The method

sent a request to the OCI REST API to get the VCN created in a synchronous manner. You

may have spotted that it took a moment to return a response. Finally, as we printed the

response.data attribute, we were able to see the OCID (id) of the newly created VCN as

well as all other VCN attributes. Figure 3-6 shows the new VCN in the OCI Console.

Figure 3-6. VCN created using the SDK

To delete the VCN, you can use the delete_vcn method like this:

>>> response.data.id

'ocid1.vcn.oc1.eu-frankfurt-1.aa.........74vj5a'

>>> vcn.delete_vcn(response.data.id)

Chapter 3 automating Cloud infrastruCture

137

To quit the Python interpreter and leave the virtual environment, you can issue the

following commands:

>>> quit()

(ocidev) $ deactivate

$

In this section, we’ve briefly covered the introductory aspects of the Python SDK

for Oracle Cloud Infrastructure. If you would like to learn more, please refer to the

comprehensive documentation available at https://oracle-cloud- infrastructure-

python-sdk.readthedocs.io.

 CLI
The OCI command-line interface (CLI) is a command-line utility that lets you interact

with Oracle Cloud Infrastructure REST APIs in a convenient, scripted way. The CLI is

slightly more powerful than the OCI Console because you may find features available as

CLI commands that are not implemented in the OCI Console. Furthermore, it is usually

faster to execute a script instead of clicking your way through the graphical interface

of the OCI Console. If you look closer at the CLI, you will discover that it is built on the

Python SDK for Oracle Cloud Infrastructure. In other words, the OCI CLI is implemented

in Python as the oci-cli module, which uses the classes from the oci module. Figure 3-7

illustrates this concept.

Figure 3-7. OCI CLI

The CLI is implemented as an open source project with code available on GitHub

at https://github.com/oracle/oci-cli. It can be installed on the Linux, macOS, and

Windows operating systems.

Chapter 3 automating Cloud infrastruCture

https://oracle-cloud-infrastructure-python-sdk.readthedocs.io
https://oracle-cloud-infrastructure-python-sdk.readthedocs.io
https://github.com/oracle/oci-cli

138

 Installation
You install the CLI using a script dedicated to your operating system. The scripts can be

downloaded from the GitHub account for the OCI CLI. As a matter of fact, there are two

scripts available.

• A shell script for Linux/macOS/Windows Subsystem for Linux

• A PowerShell script for native CLI execution on Windows

If executed, each of the two scripts performs similar steps.

To install the CLI on Linux, macOS, or Windows Subsystem for Linux, open a

Terminal window and execute this command:

$ bash -c "$(curl -L https://raw.githubusercontent.com/oracle/oci-cli/

master/scripts/install/install.sh)"

Note the code snippets from this book were tested in the macos Console and
on Windows subsystem for linux. all of the commands should easily work in all
major linux distributions. if you are using Windows, please run the exercises either
on a guest Vm with linux or on Windows subsystem for linux.

In the first place, the presence of Python binaries in the PATH variable is verified,

and any missing native package dependencies are downloaded and put in place, if

needed. The installer will prefer Python 3 to Python 2. Yet, the CLI works fine with

any of the two. In the previous section, I mentioned that the CLI is basically a Python

module. This is why the installer creates a new virtual environment dedicated to the

CLI so that its dependencies are isolated from any other Python-based development

you may be working on in the meantime. During the installation process, you will be

asked to provide a directory path for the virtual environment and another path to store a

lightweight oci utility. The utility can be thought of as the CLI executable, which exposes

the oci-cli Python module classes in the form of a convenient command-line utility.

You can leave the defaults if you do not have any specific directory in mind. At the end,

the installer will update your PATH variable so that you can execute the oci utility in a

straightforward manner. In some shells, the oci utility might not be visible right after

installation. In such a case, you have to either restart the console or simply source the file

Chapter 3 automating Cloud infrastruCture

139

in which the CLI added itself to the PATH variable. On Linux and Windows Subsystem

for Linux, it is usually ~/.bashrc, while on Mac it is usually the ~/.bash_profile file.

$ oci --version

Command 'oci' not found.

$ source ~/.bashrc

As soon as the installation has been completed, you should be able to check the

version of the CLI.

$ oci --version

2.6.6

The first line of the oci utility script will tell you the location of the virtual

environment. This code snippet shows how to activate the virtual environment of your

CLI and list the SDK version the CLI is using:

$ head -n 1 `which oci`

#!/Users/mjk/lib/oracle-cli/bin/python3

$ cd ~/lib/oracle-cli/

$ source bin/activate

(oracle-cli) $ python3 -m pip freeze | grep oci

oci==2.5.1

oci-cli==2.6.6

(oracle-cli) $ deactivate

$

We have done this to illustrate the CLI relationship to the Python SDK. In your daily

work with the CLI, you won’t explicitly activate the virtual environment but will use the

oci utility instead.

 Configuration
The CLI config file is a simple properties file that stores the details required for signing

the API requests that are sent to the Oracle Cloud Infrastructure REST API on behalf of a

named IAM user. If you expect that the CLI configuration is similar to the configuration

file used in the context of the Python SDK for OCI, you are right. Listing 3-6 shows the

structure of the CLI config file.

Chapter 3 automating Cloud infrastruCture

140

Listing 3-6. OCI CLI Config File

[DEFAULT]

tenancy=ocid1.tenancy.oc1..aa.........

region=eu-frankfurt-1

user=ocid1.user.oc1..aa........

fingerprint=12:78:5b:60:65:cf:dc:b1:04:fd:3d:31:2b:a7:88:12

key_file=/Users/mjk/.apikeys/oci_api_pem

pass_phrase=secret

The structure is the same as the one used in the previous section about the

SDK. Moreover, the CLI expects the configuration file at the same default ~/.oci/config

path.

If you still have the ~/.oci/config file in place, the CLI is ready to be used.

Caution if you have created the .oci/config file for use with the sdK, as
described in the preceding section, skip the oci setup config step that is
explained in the following text because the configuration is already present.

If you skipped the section about the SDK or have removed the configuration, do not

worry. You can use a simple built-in CLI configuration wizard. You will need to provide

the same information I’ve listed in the “Preparing for SDK, CLI, and Terraform” section.

Additionally, you will be given an opportunity to create a new API signing keypair, in

case you didn’t prepare one earlier.

$ oci setup config

Enter a location for your config [/Users/mjk/.oci/config]:

Enter a user OCID: ocid1.user.oc1..aa.........

Enter a tenancy OCID: ocid1.tenancy.oc1..aa.........

Enter a region (e.g. ap-seoul-1, ap-tokyo-1, ca-toronto-1, eu-frankfurt-1,

uk-london-1, us-ashburn-1, us-gov-ashburn-1, us-gov-chicago-1, us-gov-

phoenix-1, us-langley-1, us-luke-1, us-phoenix-1): eu-frankfurt-1

Do you want to generate a new RSA key pair? (If you decline you will be

asked to supply the path to an existing key.) [Y/n]: n

Enter the location of your private key file: /Users/mjk/.apikeys/oci_api_pem

Enter the passphrase for your private key:

Chapter 3 automating Cloud infrastruCture

141

Fingerprint: e6:99:f5:82:db:a9:75:fb:cd:3c:30:74:00:b3:61:2b

Do you want to write your passphrase to the config file? (if not, you will

need to supply it as an argument to the CLI) [y/N]: y

Config written to /Users/mjk/.oci/config

If you have decided to generate a new API signing keypair using oci setup config,

please remember to upload the public key to the cloud for your IAM user. If you do not

remember how to do it, please go back to the “Uploading the Public Key” section earlier

in this chapter.

Storing the password for your private key is optional. If you decide against doing

it, you will be prompted for the password every time you issue a CLI command. If you

decide in favor, please remember not to copy this file anywhere else also to keep its

permissions restricted to the file owner.

$ ls -l .oci

-rw------- 1 mjk staff 322B Jun 13 21:26 config

Now, you should be ready to test the CLI. We are going to list the available versions

of Ubuntu-based images. Such a query is run in the context of the root compartment

whose OCID is the same as the OCID of the tenancy. Luckily, we already stored the root

compartment OCID in the CLI configuration file and can use a combination of grep and

sed tools to extract this value. This is how you run your first OCI command that sends a

request to the OCI REST API:

$ TENANCY_OCID=`cat ~/.oci/config | grep tenancy | sed 's/tenancy=//'`

$ oci compute image list --compartment-id $TENANCY_OCID --operating-system

"Canonical Ubuntu" --output table --query "data [*].{Image:\"display- name\"}"

+--+

| Image |

+--+

| Canonical-Ubuntu-18.04-Minimal-2019.05.15-0 |

| Canonical-Ubuntu-18.04-Minimal-2019.04.15-0 |

| Canonical-Ubuntu-18.04-Minimal-2019.03.11-0 |

| Canonical-Ubuntu-18.04-2019.05.15-0 |

| Canonical-Ubuntu-18.04-2019.04.15-0 |

| Canonical-Ubuntu-18.04-2018.12.10-0 |

Chapter 3 automating Cloud infrastruCture

142

| Canonical-Ubuntu-16.04-Minimal-2019.05.15-0 |

| Canonical-Ubuntu-16.04-Minimal-2019.04.15-0 |

| Canonical-Ubuntu-16.04-Minimal-2019.03.11-0 |

| Canonical-Ubuntu-16.04-Gen2-GPU-2019.05.15-0 |

| Canonical-Ubuntu-16.04-Gen2-GPU-2019.04.15-0 |

| Canonical-Ubuntu-16.04-Gen2-GPU-2019.03.20-0 |

| Canonical-Ubuntu-16.04-2019.05.15-0 |

| Canonical-Ubuntu-16.04-2019.04.15-0 |

| Canonical-Ubuntu-16.04-2019.03.20-0 |

| Canonical-Ubuntu-14.04-2019.05.15-0 |

| Canonical-Ubuntu-14.04-2019.05.02-0 |

| Canonical-Ubuntu-14.04-2019.03.19-0 |

+--+

The OCI REST API uses JSON for the payload. The CLI will also output JSON as its

default format. You can change it and use a tabular output by applying the --output

table option. If you want to limit what gets printed, you can use the --query option that

consumes a valid JMESPath, which is a query language for JSON.

Tip if you have ever worked with Xml before, you can think of Jmespath as
something like Xpath but for Json.

Nearly every CLI command requires a compartment OCID. If you know that you

are going to work with one given compartment for the majority of time, you can define

a default value for the --compartment-id option. Default values for CLI commands

options can be defined in the ~/.oci/oci_cli_rc file. Listing 3-7 presents a minimalistic

oci_cli_rc file with just one profile with a single default value.

Listing 3-7. OCI CLI RC File

[DEFAULT]

compartment-id = ocid1.compartment.oc1..aa.........

The [DEFAULT] part is the name of the profile. This also applies to the configuration

file shown in Listing 3-6. You can store multiple profiles in one configuration file (or in

the file with default values) and dynamically select the profile with the --profile option

when you issue a CLI command. For example, you can have a separate profile for each

Chapter 3 automating Cloud infrastruCture

143

compartment. This can be helpful when you work with just a few compartments and

want to simplify the way you choose them as you execute CLI commands. Listing 3-8

presents this configuration.

Listing 3-8. OCI CLI RC File with Multiple Profiles

[DEFAULT]

compartment-id = ocid1.compartment.oc1..aa.........abc

[SANDBOX]

compartment-id = ocid1.compartment.oc1..aa.........def

Actually, there is more than just the default values you can store in the oci_cli_rc

file. For example, it is possible to create named JMESPath queries and reference them as

you use CLI commands. We are going to test this now.

Please copy the template of the oci_cli_rc file to the ~/.oci/ directory and edit the

file to replace the value of the compartment_id property with the OCID of your Sandbox

compartment.

$ cp ~/git/oci-book/chapter03/2-cli/oci_cli_rc.template ~/.oci/oci_cli_rc

$ vi ~/.oci/oci_cli_rc

Listing 3-9 presents the oci_cli_rc file. The DEFAULT profile includes the

compartment- id for your Sandbox compartment. The predefined section called OCI_CLI_

CANNED_QUERIES is used to store common queries that can be reused in your CLI calls. A

query called list_ubuntu_1804 can be used to filter the results based on the version of

the operating system and display image names only.

Listing 3-9. OCI CLI RC File with Predefined Query

[DEFAULT]

compartment-id = ocid1.compartment.oc1..aa.........gzwhsa

[OCI_CLI_CANNED_QUERIES]

list_ubuntu_1804 = data[?"operating-system-version"=='18.04'].

{Image:"display-name"}

Chapter 3 automating Cloud infrastruCture

144

Now, you can reuse this predefined query as you type the CLI command. Remember

to prefix the value for the --query parameter with the query:// string.

$ oci compute image list --operating-system "Canonical Ubuntu" --output

table --query query://list_ubuntu_1804

+-------------------------------------+

| Image |

+-------------------------------------+

| Canonical-Ubuntu-18.04-2019.05.15-0 |

| Canonical-Ubuntu-18.04-2019.04.15-0 |

| Canonical-Ubuntu-18.04-2018.12.10-0 |

+-------------------------------------+

Tip if you are using both the Cli and the sdK for other projects, you can either
maintain multiple configuration files and explicitly pass their filesystem path or base
on dedicated, named profiles in a single configuration file under the default path.

If you want to learn more about CLI configuration, you can refer to the official

documentation at https://docs.cloud.oracle.com/iaas/Content/API/SDKDocs/

cliconfigure.htm.

 Using the CLI
I mentioned before that the CLI may offer features that are not available in the OCI

Console, but if something is possible with the OCI Console, it is also possible when using

the CLI. This is why if you see that there are some repeatable tasks you perform in the OCI

Console and they cost you too much time, you may consider automating them using the

CLI. In this section, you will see how to launch a compute instance using the OCI CLI.

I am assuming that you already created the oci_cli_rc file, as described in the

previous section. Listing 3-10 shows the minimal content required from now on. The

OCID value of the Sandbox compartment is present within the DEFAULT profile.

Chapter 3 automating Cloud infrastruCture

https://docs.cloud.oracle.com/iaas/Content/API/SDKDocs/cliconfigure.htm
https://docs.cloud.oracle.com/iaas/Content/API/SDKDocs/cliconfigure.htm

145

Listing 3-10. OCI CLI RC File with Compartment for the Infrastructure

[DEFAULT]

compartment-id = ocid1.compartment.oc1..aa.........gzwhsa

Let’s start by making sure we are about to provision OCI resources in the correct

compartment. You should see the name of the Sandbox compartment as a result of this

command:

$ oci iam compartment get --output table --query "data.

{CompartmentName:\"name\"}"

+-----------------+

| CompartmentName |

+-----------------+

| Sandbox |

+-----------------+

If you read Chapter 2, you may remember that a compute instance must exist within

a subnet that is part of a VCN. This is a CLI command that creates a new VCN, named

cli-vcn, which uses the 192.168.3.0/24 address space:

$ vcn_ocid=`oci network vcn create --cidr-block 192.168.3.0/24 --display-

name cli-vcn --query "data.id" | tr -d '"'`

$ echo $vcn_ocid

ocid1.vcn.oc1.eu-frankfurt-1.aa.........lg4b7w

I’ve filtered the output using the --query parameter, removed the parentheses with the

tr program, and saved the newly generated VCN OCID as a bash variable named vcn_ocid.

Why? We will need the VCN OCID as an input parameter when we create an Internet

gateway and a subnet. This is a CLI command that provisions a new Internet gateway within

the VCN:

$ igw_ocid=`oci network internet-gateway create --vcn-id $vcn_ocid

--display-name cli-igw --is-enabled true --query "data.id" | tr -d '"'`

$ echo $igw_ocid

ocid1.internetgateway.oc1.eu-frankfurt-1.aa.........2ptvoa

Chapter 3 automating Cloud infrastruCture

146

To enable the connectivity with the Internet, we will add a routing rule that directs all

outbound traffic from the VCN to the Internet gateway. This is the command that adds a

new routing table with the relevant route rule:

$ route_rules="[{\"cidrBlock\":\"0.0.0.0/0\", \"networkEntityId\":\"$igw_ocid\"}]"

$ rt_ocid=`oci network route-table create --vcn-id $vcn_ocid --display-name

cli-rt --route-rules "$route_rules" --query "data.id" | tr -d '"'`

$ echo $rt_ocid

ocid1.routetable.oc1.eu-frankfurt-1.aa.........ukqcjq

Before invoking the oci network route-table create command, a supplementary

variable called route_rules with a single route rule referencing the Internet gateway has

been created. Again, we are persisting the cloud identifier of the route table in a variable.

We will need it while creating a subnet. This is how you create a subnet using the CLI:

$ ad1=`oci iam availability-domain list --query data[0].name | tr -d '"'`

$ echo $ad1

feDV:EU-FRANKFURT-1-AD-1

$ subnet_ocid=`oci network subnet create --vcn-id $vcn_ocid --display-name

cli-vcn --cidr-block "192.168.3.0/30" --prohibit-public-ip-on-vnic false

--availability-domain $ad1 --route-table-id $rt_ocid --query data.id | tr

-d '"'`

$ echo $subnet_ocid

ocid1.subnet.oc1.eu-frankfurt-1.aa.........sqyz6a

This time, we made two calls to the OCI REST API using the CLI. Initially, we fetched

the name of the first availability domain in our current region and saved it to a new

variable. Second, we created a new AD-specific subnet with a narrow addressing space

of 192.168.3.0/30, which gives us just a single usable IPv4 address: 192.168.3.2. Why just

one? OCI reserves the first two addresses and the last address in each VCN subnet.

We are ready to provision a new compute instance. Please make sure there is an SSH

public key present under ~/oci_id_rsa.pub. You created an SSH keypair in Chapter 2.

The keypair will be required to enable remote access to the instance. This is how you

launch a new compute instance using the CLI:

$ image_ocid=`oci compute image list --shape "VM.Standard2.1" --operating-

system "CentOS" --operating-system-version 7 --sort-by TIMECREATED --query

data[0].id | tr -d '"'`

Chapter 3 automating Cloud infrastruCture

147

$ echo $image_ocid

ocid1.image.oc1.eu-frankfurt-1.aa.........hl2cma

$ vm_ocid=`oci compute instance launch --display-name cli-vm --availability-

domain "$ad1" --subnet-id "$subnet_ocid" --private- ip 192.168.3.2 --image-

id "$image_ocid" --shape VM.Standard2.1 --ssh- authorized- keys-file

~/oci_id_rsa.pub --wait-for-state

RUNNING --query data.id | tr -d '"'`

Action completed. Waiting until the resource has entered state: RUNNING

$ echo $vm_ocid

ocid1.instance.oc1.eu-frankfurt-1.ab.........wsbmoq

Each compute instance must be based on an image that provides an operating system

and, optionally, additional preinstalled software. The OCI CLI command that launches a

compute instance requires an OCID of the image. This is why we query for the OCID of

the newest shape-compatible CentOS 7 base operating system image in the first place.

Subsequently, we issue the oci compute instance launch command providing a display

name (--display-name) to be used, a preferred private IP address (--private- id), and a

desired shape (--shape) that defines the profile of the allocated hardware resources and

identifiers for the subnet (--subnet-id) and the image (--image-id). A target availability

domain (--availability-domain) must be the same as the one used for the subnet.

Finally, we tell OCI to wait until the instance enters the RUNNING state. If we had skipped

that part, the CLI would have returned before the provisioning process had completed.

Figure 3-8 presents the instance in the RUNNING state as shown in the OCI Console.

Figure 3-8. Compute instance provisioned with the CLI

Do you remember that we discussed the oci_cli_rc configuration file? Have you

spotted any parameter that was always the same while we were executing the commands

to launch a compute instance? Each command defined a --query parameter with

the same data.id string as a value. In theory, looking at this usage pattern, you could

consider adding it to the oci_cli_rc configuration file. In reality, this query is a bit too

trivial to be stored in the oci_cli_rc file, but feel free to do so, if you want.

Chapter 3 automating Cloud infrastruCture

148

As a matter of fact, you will use the CLI more often to query for data. The compute

instance we’ve just launched is running in a public subnet and has been assigned an

ephemeral public IPv4 address. Let’s find out the exact value of this public IP address.

As we’ve saved the OCID of the compute instance as a variable (vm_ocid), we can reuse

this value now. This is how you query for a public IP address of a compute instance

running in a public subnet:

$ oci compute instance list-vnics --instance-id "$vm_ocid" --query

data[0].\"public-ip\" --raw-output

130.61.89.229

The CLI is based on a procedural approach when provisioning resources or querying

for data. You specify the actions in a particular sequence that is taken by the CLI. These

actions, issued as the CLI commands, are often mapped 1:1 into OCI REST API requests.

Dependencies between resource types must be respected and taken into consideration

in planning the action sequence. Similarly, if you delete the resources, the sequence

must be usually inverted. This is how you terminate and delete previously created

resources:

$ oci compute instance terminate --instance-id $vm_ocid --wait-for-state TERMINATED

Are you sure you want to delete this resource? [y/N]: y

Action completed. Waiting until the resource has entered state: TERMINATED

$ oci network subnet delete --subnet-id $subnet_ocid --wait-for-state TERMINATED

Are you sure you want to delete this resource? [y/N]: y

Action completed. Waiting until the resource has entered state: TERMINATED

$ oci network route-table delete --rt-id $rt_ocid --wait-for-state TERMINATED

Are you sure you want to delete this resource? [y/N]: y

Action completed. Waiting until the resource has entered state: TERMINATED

$ oci network internet-gateway delete --ig-id $igw_ocid --wait-for-state

TERMINATED

Are you sure you want to delete this resource? [y/N]: y

Action completed. Waiting until the resource has entered state: TERMINATED

$ oci network vcn delete --vcn-id $vcn_ocid

Are you sure you want to delete this resource? [y/N]: y

Chapter 3 automating Cloud infrastruCture

149

In the procedural approach, the responsibility to understand what actions have to

be taken and in which sequence is delegated to the programmer. This can increase the

complexity of the scripts, especially if you want to implement various types of changes to

the state of an existing infrastructure. In such a case, you need to begin with finding out

what the current state is, before you plan the actions that would bring the infrastructure

to the expected state. It would have been much easier just to define the expected state

and let a provisioning tool detect what kind of actions have to be taken depending on the

current state of the infrastructure. This would be a declarative approach.

 Terraform
Terraform is an infrastructure-as-code provisioning tool that tracks the state of the

infrastructure it is managing to enable the declarative approach. Instead of defining and

sequencing actions, as you are doing while working with the CLI, Terraform lets you

define the expected state of your infrastructure. Next, it becomes the job of Terraform to

detect what kind of actions, and in which sequence, have to be taken to bring the cloud

resources to the expected state. You do not need to worry about any intermediary states.

Only the result matters.

Terraform supports a diverse range of cloud providers through a set of plugins

called providers. When you initiate a new project using the terraform init command,

Terraform reads your configuration files in this directory, detects which provider to

use, and downloads the newest version of a particular provider plugin. It is the provider

plugin that is responsible for interacting with, in our case, Oracle Cloud Infrastructure

REST APIs, as shown in Figure 3-9.

Figure 3-9. Terraform

Let’s take a closer look at the concept of infrastructure as code.

Chapter 3 automating Cloud infrastruCture

150

 Infrastructure as Code
The concept behind infrastructure as code is simple. You define your target cloud

infrastructure, which consists of virtual cloud networks, compute instances, instance

pools, custom images, various types of storage, managed database instances, managed

Kubernetes clusters, and other cloud resources, in one or more configuration files.

We often say that you write the infrastructure code. If you are using Terraform, the

configuration files, or simply the infrastructure code, use JSON-like HashiCorp Language

(HCL) syntax. Listing 3-11 presents a sample compute instance definition in HCL syntax.

Listing 3-11. Terraform HCL for a Compute Instance

resource "oci_core_instance" "bastion_vm" {

 compartment_id = var.compartment_ocid

 display_name = "bastion-vm"

 availability_domain = var.ads[0]

 source_details {

 source_id = "var.compute_image_ocid

 source_type = "image"

 }

 shape = "VM.Standard2.2"

 create_vnic_details {

 subnet_id = oci_core_subnet.bastion_ad1_net.id

 assign_public_ip = true

 }

 metadata = {

 ssh_authorized_keys = file("~/.ssh/oci_id_rsa.pub")

 }

}

Every cloud resource definition is specified using blocks of data. Resource block

headers have a resource <type> <name> structure. As an example, Oracle Cloud

Infrastructure compute instances are of the oci_core_instance type. If you look closer

at Listing 3-11, you will spot that some attribute values use references to variables (var.

compartment_ocid), attributes of other resources (oci_core_subnet.bastion_ad1_net.

id), and even file paths in the local filesystem (file(...)). This leads to a conclusion

that some resources depend on the others. It is pretty clear that a dependency chain

Chapter 3 automating Cloud infrastruCture

151

is important for the sequence of various actions such as creation or destruction

performed on groups of related resources. Terraform builds a graph that tracks all these

dependencies and uses it to decide which actions can be done in parallel, shortening the

overall provisioning time, and which actions have to be performed in a sequence.

The infrastructure code you write is understood as the expected state. You can

change the code back and forth and apply these changes multiple times. Every time

you do it, Terraform compares the expected state with the so-called current state that

correspondes to the infrastructure deployed during the previous provisioning. The

calculated difference is used to create an execution plan that consists of a series of steps

that entail various OCI REST API calls that cause the real provisioning. Selected steps

can run in parallel, as long as it does not impact the dependency chain. An execution

plan can include actions that create new cloud resources, alter the existing ones, or

terminate the resources that have to be removed. Sometimes, a small change in just one

resource attribute will terminate the instance and launch a completely new one. For

example, such a situation will take place when you change the compute instance shape

of an existing instance. The shape specifies the hardware configuration for a compute

instance. Other changes can cause nondestructive amendments such as adding a new

security rule to an existing security list.

What we’ve just done in this section was a brief Terraform provider for Oracle Cloud

Infrastructure crash course. If you feel that we’ve just scratched the surface of something

complex, you are absolutely right, but don’t worry. We will use Terraform in all the

further chapters in this book so that you will have lots of opportunities to practice. Last

but not least, I will explain Terraform features on the fly, as they appear in the course of

the book.

Tip You can find the terraform documentation at www.terraform.io/docs/
index.html.

I bet you are now asking yourself how to put your hands on Terraform-driven

automation for Oracle Cloud Infrastructure. What about installing the software first?

Chapter 3 automating Cloud infrastruCture

http://www.terraform.io/docs/index.html
http://www.terraform.io/docs/index.html

152

 Installation
At the time of writing, you just download a single, executable binary file with the Terraform

version that matches your operating system. To install Terraform, follow these steps:

 1. Go to www.terraform.io/downloads.html.

 2. Download the binary file for your operating system.

 3. Move the downloaded terraform file to the directory where you

are storing software binaries, and remember to add this directory

to your PATH variable, unless you’ve already done it.

 4. Test the installation by issuing a version check command.

All these steps can be automated. Just be careful to identify the correct path to the newest

binary before you do them. At the time of writing, the newest binary is the 0.12.9 version.

$ wget https://releases.hashicorp.com/terraform/0.12.2/terraform_0.12.9_

linux_amd64.zip

$ sudo unzip terraform_0.12.9_linux_amd64.zip -d /usr/local/bin

$ terraform -v

Terraform v0.12.9

Tip if you are using Windows subsystem for linux, you have to download the
terraform binary for linux. use the preceding code snippet, and execute it within
the Wsl Console.

As you probably expect, this simplicity comes at the cost of manual upgrades. You

need to download a new binary and replace the file you’ve been using every time you see

a message like this:

$ terraform -v

Terraform v0.12.8

Your version of Terraform is out of date! The latest version

is 0.12.9. You can update by downloading from www.terraform.io/downloads.html

This is pretty much everything you need to know about the installation. All further

aspects have to be considered in the context of particular provider plugins you are going

to work with. Let me explain what I mean in the next section.

Chapter 3 automating Cloud infrastruCture

http://www.terraform.io/downloads.html

153

 Configuration
As a matter of fact, the expression Terraform configuration refers to the entire set of

files with infrastructure code. Each project contains at least one provider block in one

of the infrastructure code files. Based on this block, Terraform knows which provider

plugin binary to use. If Terraform doesn’t find the corresponding provider plugin binary

in the cross-project default directory, it will download the binary and place it in the

.terraform/plugins subdirectory of the project.

To explore the simplest Terraform-based infrastructure project, go to the

chapter03/3-terraform/1-provider-only directory.

$ cd git/oci-book/chapter03/3-terraform/1-provider-only

This project directory contains two files, as shown in Listing 3-12.

Listing 3-12. Terraform Project Structure (1-provider-only)

1-provider-only/

├── provider.tf
└── vars.tf

The content of the provider.tf file is shown in Listing 3-13.

Listing 3-13. Terraform Provider Configuration Referencing Variables

provider.tf

provider "oci" {

 tenancy_ocid = var.tenancy_ocid

 user_ocid = var.user_ocid

 region = var.region

 fingerprint = var.fingerprint

 private_key_path = var.private_key_path

 private_key_password = var.private_key_password

}

Because Terraform eventually sends API requests to the OCI REST API, it needs the

same set of connection parameters required by the SDK and the CLI to sign the request.

The “Preparing for SDK, CLI, and Terraform” section describes where you can find them.

In theory, you could store the values relevant to your cloud environment directly in the

Chapter 3 automating Cloud infrastruCture

154

provider.tf file. This is discouraged, however, because these consist of, to some extent,

sensitive data, and you do not want to store the data in a version-control system.

To avoid storing the values required by the provider block inside any of the

infrastructure code files, we will inject them using variables. We still need to declare these

variables. You could consider adding variable declarations to the same provider.tf file.

It would be absolutely fine. Yet, to keep the project assets well structured, there exists

another file for that purpose: the vars.tf file. It is shown in Listing 3-14.

Listing 3-14. Terraform Variables Configuration

vars.tf

variable "tenancy_ocid" {}

variable "user_ocid" {}

variable "region" {}

variable "fingerprint" {}

variable "private_key_path" {}

variable "private_key_password" {}

There are four basic ways to supply the values for variables.

• Providing each variable with a value at the prompt when executing

Terraform commands

• Providing each variable individually with the -var argument when

executing a Terraform command

• Using a variable definition file .tfvars whose file path is passed as

the -var-file argument when executing a Terraform command

• Using environment variables prefixed with TF_VAR_

You could supply the values for variables every time you issue the terraform

command, but I am sure it would become annoying even to the most patient person in

the planet. More often, you will end up defining them in a variable definition file or using

environment variables.

Any environment variable prefixed with TF_VAR_ will be taken into account by

Terraform. For example, the TF_VAR_region will be treated as the source for the

variable region. This is why you will find it useful to keep your input variables in

some sort of shell script. You would then execute this script and, as a result, set these

Chapter 3 automating Cloud infrastruCture

155

variables every time you are about to work on a Terraform-based project. Let’s prepare

a file like that. First, copy the following template:

$ cp ~/git/oci-book/chapter03/3-terraform/tfvars.env.template.sh ~/tfvars.

env.sh

Now, please edit the newly created tfvars.env.sh file and remember to properly

replace all the values. For the TF_VAR_compartment_ocid, please use the OCID of the

Sandbox compartment.

Terraform

export TF_VAR_tenancy_ocid=ocid1.tenancy.oc1..aa.........abcdef

export TF_VAR_user_ocid=ocid1.user.oc1..aa.........ghijkl

export TF_VAR_fingerprint=12:78:5b:.........:a7:88:12

export TF_VAR_region=eu-frankfurt-1

export TF_VAR_private_key_path=/Users/mjk/.apikeys/oci_api_pem

export TF_VAR_private_key_password=secret

export TF_VAR_compartment_ocid=ocid1.compartment.oc1..aa.........

Again, you can use vi or some other text editor to edit the file.

$ vi ~/tfvars.env.sh

Tip You can peek into the sdK/Cli config file available at the ~/.oci/config
path and copy the values for use, this time in the tfvars.env.sh file for terraform.
in addition, please remember to use the oCid of the Sandbox compartment.

If you’ve chosen not to store the password for the private API signing key as one of

your environment variables, Terraform will prompt you for this missing variable like this:

var.private_key_password

 Enter a value:

It can be pretty annoying to be honest. If you feel comfortable storing your private

API signing key password in a file you will later source, feel free to do it. In such a case,

please remember to set the correct filesystem permissions to limit the read rights to the

file owner only.

$ chmod go-rwx ~/tfvars.env.sh

Chapter 3 automating Cloud infrastruCture

156

If you want, you can source the file for each session. To do so, append the

appropriate command to the end of the ~/.bashrc (Linux or Windows Subsystem for

Linux) or ~/.bash_profile (macOS) file.

$ echo "source ${HOME}/tfvars.env.sh" | tee -a ${HOME}/.bash_profile

We are ready to initialize a new Terraform project. Issue the terraform init

command. The tool will detect that you want to use the oci provider, download its

binary in the newest version, and place the provider file in the .terraform/plugins

subdirectory. Let’s try it now.

$ source ~/tfvars.env.sh

$ cd ~/git/oci-book/chapter03/3-terraform/1-provider-only

$ terraform init

Initializing provider plugins...

- Checking for available provider plugins on https://releases.hashicorp.com...

- Downloading plugin for provider "oci" (3.45.0)...

* provider.oci: version = "~> 3.45"

Terraform has been successfully initialized!

Now, let’s inspect the same project directory.

.

├── .terraform
│ └── plugins
│ └── darwin_amd64
│ ├── lock.json
│ └── terraform-provider-oci_v3.45.0_x4
├── provider.tf
└── vars.tf

As you can see, a new subdirectory has appeared. Are you curious how big the

provider binary is that has just been downloaded by Terraform? Me too.

$ du -sh .terraform/

 41M .terraform/

The size of the provider binary does differ a bit between platforms.

Chapter 3 automating Cloud infrastruCture

157

You are ready to create a simple, but this time additionally meaningful, Terraform-

based project. It’s a true infrastructure-as-code approach in action. Read on.

 Using Terraform
In this section, we will create a small infrastructure-as-code project. The target setup will

consist of a virtual cloud network with a single compute instance running in a public

subnet. The virtual machine will be running an Apache HTTP Server instance. Security

rules and operating system firewall rules will allow inbound traffic to the server’s port 80.

Figure 3-10 presents this architecture using Oracle Cloud Infrastructure notation.

Figure 3-10. Single server infrastructure

 Provisioning

Make sure you’ve installed Terraform. I will assume you have added the required

connectivity-related variables to a file you’ve already sourced in your current Terminal

session. You can check whether the variables are set correctly by issuing a command that

lists all environment variables prefixed with TF_VAR_.

$ env | grep TF_VAR_

TF_VAR_tenancy_ocid={you-will-see-here-your-value}

TF_VAR_compartment_ocid={you-will-see-here-your-value}

Chapter 3 automating Cloud infrastruCture

158

TF_VAR_region={you-will-see-here-your-value}

TF_VAR_fingerprint={you-will-see-here-your-value}

TF_VAR_private_key_path={you-will-see-here-your-value}

TF_VAR_user_ocid={you-will-see-here-your-value}

TF_VAR_private_key_password={you-will-see-here-your-value}

Now, please enter this directory:

$ cd ~/git/oci-book/chapter03/3-terraform/2-simple-infrastructure

You should see the following files:

.

├── modules.tf
├── provider.tf
├── vars.tf
├── vcn.tf
└── web
 ├── cloud-init
 │ └── webvm.config.yaml
 ├── compute.tf
 ├── vars.tf
 └── vcn.tf

If you read the previous section, you already know what kind of content to expect in

the provider.tf and vars.tf files. We will now initialize the infrastructure project.

$ terraform init

Initializing modules...

- module.web

 Getting source "web"

Initializing provider plugins...

- Checking for available provider plugins on https://releases.hashicorp.com...

- Downloading plugin for provider "oci" (3.45.0)...

* provider.oci: version = "~> 3.45"

Terraform has been successfully initialized!

Chapter 3 automating Cloud infrastruCture

159

Terraform downloads the newest plugin version for the oci provider.

Let’s look at the directories again. Each directory that contains .tf files can

be seen as an individual module. If you split your infrastructure configuration into

groups of Terraform configuration files with dedicated folders and well-selected input

parameters, you will be able to increase the code reusability across your projects. Our

demonstrational project contains two modules.

• root: We define here the provider configuration, a VCN, an Internet

gateway, and a module reference to the web module.

• web: We define here the route table, the security list, the subnet, and

a compute instance that uses a cloud-init script to install and start

the web server.

If you open the vars.tf file, you will see that it defines one more variable, namely,

compartment_ocid, when compared to the file with the same name that we saw in the

previous section.

Provider-specific Variables

variable "tenancy_ocid" {}

variable "user_ocid" {}

variable "region" {}

variable "private_key_path" {}

variable "fingerprint" {}

variable "private_key_password" {}

Project-specific input variables

variable "compartment_ocid" {}

Nearly every OCI resource lives inside a compartment. This means you will be

expected to provide an OCID of a particular compartment you would like your resources

to exist within. The corresponding environment variable is already present in the

tfvars.env.sh file.

The compute instance resource definition inside the web/compute.tf configuration

file assumes you have an existing SSH keypair with a public key available at ~/.ssh/oci_

id_rsa.pub. Please generate a new keypair in the ~/.ssh/ or copy the existing keypair,

which was created in Chapter 2, to that folder.

Chapter 3 automating Cloud infrastruCture

160

We will now provision the infrastructure. As soon as we see it up and running, I

will explain the configuration files in detail. Please make sure you are in the 2-simple-

infrastructure directory and issue the terraform apply command like this:

$ terraform apply

data.oci_core_images.centos_image: Refreshing state...

data.oci_identity_availability_domains.ads: Refreshing state...

An execution plan has been generated and is shown below.

Resource actions are indicated with the following symbols:

 + create

 <= read (data resources)

Terraform will perform the following actions:

+ oci_core_internet_gateway.web_igw

+ oci_core_virtual_network.web_vcn

<= module.web.data.oci_core_vnic.web_vnic

<= module.web.data.oci_core_vnic_attachments.web_vnic_attachment

 + module.web.oci_core_instance.web_vm

 + module.web.oci_core_route_table.web_rt

 + module.web.oci_core_security_list.web_sl

 + module.web.oci_core_subnet.web_subnet

Plan: 6 to add, 0 to change, 0 to destroy.

Do you want to perform these actions?

 Terraform will perform the actions described earlier.

 Only 'yes' will be accepted to approve.

 Enter a value:

Terraform will create a provisioning plan and ask you for permission to proceed.

Provide yes as an input and confirm with Enter. The provisioning begins. Terraform uses

the logic implemented in the plugin for the OCI provider and issues a series of OCI REST

API calls. Whenever possible, the API requests will be sent in parallel.

Do you want to perform these actions?

 Terraform will perform the actions described earlier.

 Only 'yes' will be accepted to approve.

Chapter 3 automating Cloud infrastruCture

161

 Enter a value: yes

oci_core_virtual_network.web_vcn: Creating...

oci_core_virtual_network.web_vcn: Creation complete after 0s

oci_core_internet_gateway.web_igw: Creating...

module.web.oci_core_security_list.web_sl: Creating...

oci_core_internet_gateway.web_igw: Creation complete after 1s

module.web.oci_core_route_table.web_rt: Creating...

module.web.oci_core_security_list.web_sl: Creation complete after 1s

module.web.oci_core_route_table.web_rt: Creation complete after 0s

module.web.oci_core_subnet.web_subnet: Creating...

module.web.oci_core_subnet.web_subnet: Creation complete after 0s

module.web.oci_core_instance.web_vm: Creating...

module.web.oci_core_instance.web_vm: Still creating... (10s elapsed)

module.web.oci_core_instance.web_vm: Still creating... (20s elapsed)

module.web.oci_core_instance.web_vm: Still creating... (30s elapsed)

module.web.oci_core_instance.web_vm: Still creating... (40s elapsed)

module.web.oci_core_instance.web_vm: Still creating... (50s elapsed)

module.web.oci_core_instance.web_vm: Creation complete after 56s

module.web.data.oci_core_vnic_attachments.web_vnic_attachment: Refreshing

state...

module.web.data.oci_core_vnic.web_vnic: Refreshing state...

Apply complete! Resources: 6 added, 0 changed, 0 destroyed.

Outputs:

web_instance_public_ip = 130.61.127.53

Let’s take a closer look at the preceding code snippet. You can see that the virtual

cloud network (web_vcn) was the first cloud resource created. Next, the creation process

started in parallel for the Internet gateway (web_igw) and the security list (web_sl).

This is pretty clear. Both exist within a VCN and have no dependencies between them.

The route table (web_rt), however, had to wait until the Internet gateway has been

successfully created. The reason behind this is that the route rule we included in the

route table pointed to the Internet gateway as its target. In other words, the route table

depended on the existence of the Internet gateway. The creation of the subnet (web_

subnet) began immediately after the route table and security list were created. Finally,

Chapter 3 automating Cloud infrastruCture

162

The last two entries (web_vnic_attachment and web_vnic) annotated with the

Refreshing state text mean that read-only requests were sent to the OCI REST API to

fetch some information. In this case, Terraform queried OCI for the public IP address

that had been assigned to the newly launched compute instance. Note this address (in

my case, it is 130.61.127.53, but you will most probably see a different value, unless you

are lucky to get the same address assigned from the pool). We will need it, in a moment,

to test the deployment.

Congratulations! You’ve just provisioned your first Terraform-based cloud solution

using the infrastructure-as-code approach. If you want, you can go to the OCI Console to

see it, as shown in Figure 3-12.

the provisioning of a compute instance (web_vm) started and took nearly a minute to

complete. Figure 3-11 presents the dependency tree.

Figure 3-11. Resource dependency tree

Chapter 3 automating Cloud infrastruCture

163

The fact that an instance is up and running does not mean that the booting process

has completed. Cloud-init scripts, especially those that download and install new

software, can take some time to complete. I explained this in Chapter 2. Try sending a

standard GET request a few times using curl until you see this:

$ VM_PUBLIC_IP=`terraform output web_instance_public_ip`

$ echo $VM_PUBLIC_IP

130.61.127.54

$ curl $VM_PUBLIC_IP

Greetings from the Cloud

If you’ve read the greeting, it means you’ve successfully tested our simple cloud

application. Hurrah!

Figure 3-12. web-vm compute instance in the OCI Console

Chapter 3 automating Cloud infrastruCture

164

Tip if you get bored by waiting for the cloud-init script to complete, you can log into
the instance and trace the cloud-init log. i’ve explained how to do this in Chapter 2.

The infrastructure-as-code approach really shines when you need to update small

pieces of a complex cloud infrastructure. Terraform tries to minimize the number of

changes and alter (or re-create) only the resources that really have to be amended (or

destroyed and newly launched).

Assuming you’ve had enough fun testing your simple cloud application, we will now

terminate the resources. You can do this by executing the terraform destroy command.

If you use the --auto-approve option, Terraform won’t ask you for the final permission

and will proceed to send the requests to the OCI REST API. This is how you can perform

a cleanup and terminate the infrastructure we’ve created a moment ago:

$ terraform destroy --auto-approve

oci_core_virtual_network.web_vcn: Refreshing state...

data.oci_core_images.centos_image: Refreshing state...

data.oci_identity_availability_domains.ads: Refreshing state...

oci_core_security_list.web_sl: Refreshing state...

oci_core_internet_gateway.web_igw: Refreshing state...

oci_core_route_table.web_rt: Refreshing state...

oci_core_subnet.web_subnet: Refreshing state...

oci_core_instance.web_vm: Refreshing state...

data.oci_core_vnic_attachments.web_vnic_attachment: Refreshing state...

data.oci_core_vnic.web_vnic: Refreshing state...

module.web.oci_core_instance.web_vm: Destroying...

module.web.oci_core_instance.web_vm: Still destroying...10s elapsed

module.web.oci_core_instance.web_vm: Still destroying... 20s elapsed

module.web.oci_core_instance.web_vm: Still destroying... 30s elapsed

module.web.oci_core_instance.web_vm: Still destroying... 40s elapsed

module.web.oci_core_instance.web_vm: Still destroying... 50s elapsed

module.web.oci_core_instance.web_vm: Still destroying... 1m0s elapsed

module.web.oci_core_instance.web_vm: Still destroying... 1m10s elapsed

module.web.oci_core_instance.web_vm: Still destroying... 1m20s elapsed

module.web.oci_core_instance.web_vm: Destruction complete after 1m25s

module.web.oci_core_subnet.web_subnet: Destroying...

Chapter 3 automating Cloud infrastruCture

165

module.web.oci_core_subnet.web_subnet: Destruction complete after 1s

module.web.oci_core_route_table.web_rt: Destroying...

module.web.oci_core_security_list.web_sl: Destroying...

module.web.oci_core_security_list.web_sl: Destruction complete after 0s

module.web.oci_core_route_table.web_rt: Destruction complete after 0s

oci_core_internet_gateway.web_igw: Destroying...

oci_core_internet_gateway.web_igw: Destruction complete after 1s

oci_core_virtual_network.web_vcn: Destroying...

oci_core_virtual_network.web_vcn: Destruction complete after 0s

Destroy complete! Resources: 6 destroyed.

The resources are destroyed in the reversed sequence to how the resources were

created. You can verify that the compute instance really has been terminated. In the OCI

Console, you should see something like what is shown in Figure 3-13.

Figure 3-13. Terminated instance

Chapter 3 automating Cloud infrastruCture

166

 Infrastructure Code

In this section, we will discuss the resources we’ve defined in the Terraform

configuration files (suffixed with .tf). Let’s take another look at the files our project

consists of:

.

├── modules.tf
├── provider.tf
├── vars.tf
├── vcn.tf
└── web
 ├── cloud-init
 │ └── webvm.config.yaml
 ├── compute.tf
 ├── vars.tf
 └── vcn.tf

We’ve already discussed provider.tf and vars.tf. The vcn.tf file contains two

resource definitions: a virtual cloud network (web_vcn) and an Internet gateway

(web_igw). You can see the definitions for both resources in Listing 3-15.

Listing 3-15. vcn.tf (Root Module)

resource "oci_core_virtual_network" "web_vcn" {

 compartment_id = var.compartment_ocid

 cidr_block = "10.1.1.0/24"

 display_name = "web-vcn"

 dns_label = "vcn"

}

resource "oci_core_internet_gateway" "web_igw" {

 compartment_id = var.compartment_ocid

 vcn_id = oci_core_virtual_network.web_vcn.id

}

The Internet gateway (web_igw) references the OCID of the VCN (vcn_id) it exists

within. It does that with the help of Terraform syntax that empowers you to reference the

attributes of resources, variables, data sources, local values, and other types of Terraform

Chapter 3 automating Cloud infrastruCture

167

configurations as well as use functions and mathematical calculations. If you want

to reference a resource, you will use an expression that follows this structure:

type.name.attribute, for example, oci_core_virtual_network.web_vcn.id. If

you want to reference a variable, you will use this structure: var.variable_name, for

example, var.compartment_ocid.

The root module does not define any other resources. On the other hand, it does

include a module definition. You can find it in the modules.tf Terraform configuration

file. Its contents are shown in Listing 3-16.

Listing 3-16. modules.tf (Root Module)

data "oci_identity_availability_domains" "ads" {

 compartment_id = var.tenancy_ocid

}

data "oci_core_images" "centos_image" {

 compartment_id = var.tenancy_ocid

 operating_system = "CentOS"

 operating_system_version = 7

 shape = "VM.Standard2.1"

}

module "web" {

 source = "./web"

 compartment_ocid = var.compartment_ocid

 vcn_ocid = oci_core_virtual_network.web_vcn.id

 vcn_igw_ocid = oci_core_internet_gateway.web_igw.id

 vcn_subnet_cidr = "10.1.1.0/30"

 ads = data.oci_identity_availability_domains.ads.availability_domains[*].name

 compute_image_ocid = data.oci_core_images.centos_image.images[0].id

}

output "web_instance_public_ip" { value = module.web.web_public_ip }

This file has about three times more lines than the previous one we’ve discussed.

Terraform uses data sources to deliver a read-only view to the resources that already exist

in the cloud or are computed on the fly during provisioning. The first configuration block

defines a data source called ads that is used to query OCI to get the list of availability

domains. The second configuration block defines another data source called centos_image

Chapter 3 automating Cloud infrastruCture

168

that is responsible for fetching the list of available CentOS 7 base images. New versions

of operating system base images are released monthly, so this will always get you a

reference to a currently existing version. In production, you can hard-code OCIDs of

particular images to avoid unexpected changes in infrastructure when newer images are

released. In our case, we are fine with fetching the OCID of the newest image on each

Terraform execution.

Terraform uses modules to gather multiple Terraform configuration files and serve

them as reusable and customizable pieces for use across various projects. Each directory

that contains .tf files can be seen as a module. If you look at the root directory of our

project, you can see two directories that can serve as modules. The modules.tf file,

which we are discussing right now, exists within the directory we called the root module.

The third configuration block in this file defines a module (web) and tells Terraform to

instantiate the resources within the directory provided as the source attribute, which

in our case refers to the web subdirectory. To customize a module instance, we can use

attributes of our choice as long as they are defined as variables within the referenced

module directory. It may sound a bit confusing at the beginning. Let me explain with

an example. If you look at the modules.tf configuration file again, you will see that I am

passing the OCID of a VCN as a custom, arbitrarily named vcn_ocid module attribute.

The source module attribute points to the web subdirectory as the module directory. If

you open the web/vars.tf configuration file, you will see that the variable definitions

have exactly the same names as module attributes in modules.tf. For your convenience,

I’ve decided to show this relation in Figure 3-14.

Figure 3-14. Input variables and module attributes

Chapter 3 automating Cloud infrastruCture

169

Both the VCN and the Internet gateway are referenced by the resources defined

within the web module; therefore, we have to provide their OCIDs as attribute values to

the module. This is done through the vcn_ocid and vcn_igw_ocid module attributes

that are seen as variables by the resources inside the module. Furthermore, we provide

an address range block for the subnet through the vcn_subnet_cidr attribute/variable as

well as the OCID of the compartment through the compartment_ocid attribute/variable.

We use interpolation on data sources that are defined at the beginning of the

modules.tf file to pass the fetched values into the module. The compute_image_ocid

module attribute is used to convey the OCID of an operating system base image to be

used by the compute instance defined inside the web module. Please hold on a minute

to understand what this interpolation expression does. Our goal is to pass a single OCID

into the module, while the data source is defined to read all the available CentOS 7

images, showing the base operating system images first. To achieve our goal, we have to

select the OCID of the first element in the list of CentOS 7 base images fetched by the data

source. Figure 3-15 explains in detail what each part of the expression is responsible for.

Figure 3-15. Terraform data source interpolation example

To be more precise, technically, the elements on the list returned by data sources in

the OCI provider are currently implemented as maps because they associate keys that

happen to be the list element attribute names with values that are the corresponding

list element attribute values. This allows us to use another lookup-based syntax in

our interpolation expression. I am going to present this alternative right now with an

example based on the second data source.

Note the terraform provider for oracle Cloud infrastructure is implemented
as an open source project in the go language. You can find the source code on
github at https://github.com/terraform-providers/terraform-
provider- oci.

Chapter 3 automating Cloud infrastruCture

https://github.com/terraform-providers/terraform-provider-oci
https://github.com/terraform-providers/terraform-provider-oci

170

The ads module attribute provides the input to a variable with the same name

inside the web module. This time, the variable is of a list type. In this way, we can store

multiple values that can be accessed based on the list index in this variable. The ads data

source of the oci_identity_availability_domains type returns a list of availability

domains. Although we launch only one compute instance in our simple project and

could have lived with passing just a single name of a particular availability domain,

I’ve decided to provide the module with a list that contains the names of all availability

domains returned by the API. In this way, the choice of a particular availability domain

for the compute instance is delegated to the internals of the module. To construct a list

storing the values that belong to one attribute of all elements in another list, we are using

the splat expression, explained in Figure 3-16.

Listing 3-17 presents the contents of the vcn.tf file that exists inside the web module

directory. It contains the configuration for the route table (web_rt), the security list

(web_sl), and a subnet (web_subnet).

Listing 3-17. web/vcn.tf (Web Module)

resource "oci_core_route_table" "web_rt" {

 compartment_id = var.compartment_ocid

 vcn_id = var.vcn_ocid

 route_rules {

 destination_type = "CIDR_BLOCK"

 destination = "0.0.0.0/0"

 network_entity_id = var.vcn_igw_ocid

 }

 display_name = "web-rt"

}

Figure 3-16. Terraform lookup interpolation example

Chapter 3 automating Cloud infrastruCture

171

resource "oci_core_security_list" "web_sl" {

 compartment_id = var.compartment_ocid

 vcn_id = var.vcn_ocid

 egress_security_rules {

 stateless="false"

 destination="0.0.0.0/0"

 protocol="all"

 }

 ingress_security_rules {

 stateless="false"

 source="0.0.0.0/0"

 protocol="6"

 tcp_options {

 min=22

 max=22

 }

 }

 ingress_security_rules {

 stateless="false"

 source="0.0.0.0/0"

 protocol="6"

 tcp_options {

 min=80

 max=80

 }

 }

 display_name = "web-sl"

}

resource "oci_core_subnet" "web_subnet" {

 compartment_id = var.compartment_ocid

 vcn_id = var.vcn_ocid

 display_name = "web-subnet"

 availability_domain = var.ads[0]

 cidr_block = var.vcn_subnet_cidr

 route_table_id = oci_core_route_table.web_rt.id

Chapter 3 automating Cloud infrastruCture

172

 security_list_ids = [oci_core_security_list.web_sl.id]

 prohibit_public_ip_on_vnic = "false"

 dns_label = "webnet"

}

The route table (web_rt) defines a single route rule that directs the entire outbound

traffic (0.0.0.0/0) that is destined to travel outside the VCN to the Internet gateway that

has been defined in the root module and whose OCID has been passed as a module

attribute.

The security list (web_sl) defines one stateful egress rule that allows the entire

outbound traffic and two stateful ingress rules that allow the inbound traffic on ports

22 (SSH) and 80 (HTTP). As a reminder, if a stateful security rule permits the traffic in

the direction it oversees, the corresponding packets that return as part of the same TCP

session will also be allowed.

The subnet (web_subnet) resource exists within the VCN that has been defined in

the root module and whose OCID has been passed as a module attribute. It references

the route table and the security list created in the web module and briefly described in

two previous paragraphs. The value for the availability_domain attribute shows how

to access a list variable using an index: var.ads[0]. The prohibit_public_ip_on_vnic

attribute set to false makes this subnet public. It is worth noting that even though we

use just one security list for this subnet, we still have to pass its OCID as a list element

because the security_list_ids attribute expects a list. It comes from the fact that a

subnet can reference more than one security list.

Listing 3-18 presents the contents of the compute.tf file that exists inside the web

module directory. It contains the resource configuration for the compute instance

(web_vm), which runs an Apache web server, as well as two data sources (web_vnic_

attachment and web_vnic) used to fetch the public IP assigned to the instance during

provisioning. At the bottom of the file, you will find an output configuration block

(web_public_ip), which I will explain in a few moments.

Listing 3-18. web/compute.tf (Web Module)

resource "oci_core_instance" "web_vm" {

 compartment_id = var.compartment_ocid

 display_name = "web-vm"

 availability_domain = var.ads[0]

 source_details {

Chapter 3 automating Cloud infrastruCture

173

 source_id = var.compute_image_ocid

 source_type = "image"

 }

 shape = "VM.Standard2.1"

 create_vnic_details {

 subnet_id = oci_core_subnet.web_subnet.id

 assign_public_ip = true

 }

 metadata = {

 ssh_authorized_keys = file("~/.ssh/oci_id_rsa.pub")

 user_data = base64encode(file("web/cloud-init/webvm.config.yaml"))

 }

}

data "oci_core_vnic_attachments" "web_vnic_attachment" {

 compartment_id = var.compartment_ocid

 instance_id = oci_core_instance.web_vm.id

}

data "oci_core_vnic" "web_vnic" {

 vnic_id = data.oci_core_vnic_attachments.web_vnic_attachment.vnic_

attachments[0].vnic_id

}

output "web_public_ip" {

 value = data.oci_core_vnic.web_vnic.public_ip_address

}

End

The compute instance (web_vm) is launched in the subnet that has been defined

in the same module. The resource definition references the image based on the OCID

that had been fetched in the root module and supplied as an input variable to the web

module. The create_vnic_details.assign_public_ip attribute set to true will cause

OCI to assign an ephemeral public IP address from the pool of the public addresses to

the primary vNIC of the instance. The authorized_keys file on an instance will include

a public key read as a string from the file provided as a path to the file function that is

used in the expression for the metadata.ssh_authorized_keys attribute.

Chapter 3 automating Cloud infrastruCture

174

The metadata.user_data attribute specifies a base64-encoded cloud-config

configuration for the cloud-init tool that can be used to effectively customize the initialization

of a compute instance. We use it to install the Apache HTTP Server, replace the default

index.html file, open port 80 on the machine, and start the HTTP server. Listing 3-19 shows

the contents of the cloud-config file used by the cloud-init tool on the instance’s first startup.

Listing 3-19. web/cloud-init/webvm.config.yaml (Web Module)

#cloud-config

packages:

 - httpd

write_files:

 - content: |

 Greetings from the Cloud

 path: /var/www/html/index.html

runcmd:

 - ["firewall-offline-cmd", "--add-port=80/tcp"]

 - ["systemctl", "restart", "firewalld"]

 - ["systemctl", "enable", "httpd"]

 - ["systemctl", "start", "httpd"]

final_message: "$HOSTNAME initialization has been completed"

The public IP address is dynamically assigned to the compute instance from a pool of

available public IP addresses. We learn the exact address as soon as the instance has been

provisioned. A compute instance can have more than one vNIC. The first data source (web_

vnic_attachment) fetches the list of vNICs. In our case, our compute instance has only a

single vNIC. We use the OCID of this first vNIC found in the list returned by the first data

source as an input to the second data source (web_vnic), which, eventually, returns a map

with the public IP address defined as a value for the public_ip_address key. We use the

output configuration (web_public_ip) to pass this value to the root module where another

output configuration ("web_instance_public_ip") defined at the bottom of the modules.

tf file gets the value printed to the output of the Terraform build.

As we issued the terraform apply command, Terraform prepared an execution plan

that consisted of actions to be taken to bring the current state, which was based on the

information stored in the state file, to the expected state that was based on the contents

of the configuration files (.tf) in the root module and in the web modules. It is time to

briefly discuss the way Terraform manages state.

Chapter 3 automating Cloud infrastruCture

175

 State
Terraform uses a state file to keep track of the real infrastructure it has provisioned, the

intermediary values it has computed, and the dependency graph between resources.

You can think of all these elements as the current state. State existence is the key enabler

for Terraform to serve its purpose. Terraform compares the expected state as defined

across the configuration files (.tf) that build up your infrastructure code with the

current state stored in the state file to produce an execution plan that eventually leads to

API calls. Figure 3-17 illustrates this concept.

Figure 3-17. Terraform state

As you issued the terraform apply command for the first time, earlier in this

chapter, Terraform created a terraform.tfstate file in the root module directory. This

JSON file will get updated each time you run selected Terraform commands such as

refresh, plan, apply, and others. Manual changes inside this file are discouraged unless

you really know what to do. In such case, it is recommended that you back up the file and

familiarize yourself with the capabilities of the terraform state command. By default,

Terraform stores the state file locally in a form of a terraform.tfstate file, like in our

case. This can lead to two problems: backup strategies and team collaboration.

First, it is not a good idea to back up the local state file in any kind of version control

system because the file can contain some sensitive data. Second, working concurrently

with multiple copies used by various team members will, sooner or later, lead to

synchronization problems.

Chapter 3 automating Cloud infrastruCture

176

You can leverage Oracle Cloud Infrastructure object storage with the Terraform http

backend type to take the remote state approach, instead of using a local state file, which

is prone to the problems I mentioned before. If you do so, your state file will be stored as

an object in an object storage bucket, encrypted at rest and protected from unauthorized

access. Your team members will be able to collaborate, thanks to the locking mechanism

provided by the http backend type. Figure 3-18 shows a Terraform state file in an object

storage bucket.

Figure 3-19. Oracle Cloud Infrastructure automation landscape

Figure 3-18. Terraform state file in an object storage bucket

Storing the Terraform state in cloud object storage is beyond the scope of this book.

Feel free to experiment on your own. You will learn how to work with Oracle Cloud

Infrastructure object storage buckets in Chapter 5.

 Best Practices
It is time to list a few recommendations I would like to share with you about automation.

Figure 3-19 presents the automation options we’ve discussed in this chapter.

Chapter 3 automating Cloud infrastruCture

177

Use Terraform to manage the infrastructure as code and leverage a convenient

and effective declarative approach to designing your cloud resources. This will let you

version the infrastructure code and track changes so that you can always revert to a

previous state.

Use the CLI to create read-only monitoring scripts and use them when you need to

collect some information about the infrastructure on demand. Schedule these scripts, if

needed, to collect the data at set intervals, and persist the results into a data store to allow

future research and analysis. If you need to build a more sophisticated cloud monitoring

utility, feel free to implement a custom tool using the SDK. Last but not least, you should

first evaluate the built-in monitoring capabilities of OCI by using its dedicated cloud

services. Then you can use the CLI to collect statistics straight from these services.

If you use Terraform, never perform any ad hoc changes on your cloud resources

neither in the OCI Console nor using the CLI; otherwise, the Terraform state file that

stores the current state may deviate from the real state or get changed with no warning.

The latter can happen because prior to executing terraform apply, another command

(refresh) that updates the state file based on the real state detected gets implicitly

executed. In this way, you can unwillingly incorporate into your execution plan some

destructive actions on the resources that had been created manually and wipe them out.

Do not store the Terraform state file (terraform.tfstate) in a version control

system because the file may contain sensitive data. If you are using Git, make sure you’ve

included the following lines in your .gitignore:

.terraform/

terraform.state*

Use remote state to avoid this problem and make smooth team collaboration possible,

especially if the remote state backend supports a proper locking mechanism. If you

cannot rely on remote state, consider running Terraform builds on dedicated build

servers, as a part of the continuous delivery pipeline, so that the state file is stored on a

single, remote machine with limited access. In this case, you will still need to address the

issue of the state file backups. Alternatively, you can use the Oracle Cloud Infrastructure

Resource Manager, which is one of the OCI services that is beyond the scope of this book.

Split the infrastructure code you write into reusable modules. Carefully consider what

kind of module attributes will let you customize and reuse the module you are working

on in various projects. Think about the output values that may be useful in the parent

module as well as in the Terraform output.

Chapter 3 automating Cloud infrastruCture

178

Last but not least, make sure that your compute instances always use the same image

versions, no matter if newer versions are introduced in the meantime, until you are ready

to upgrade your running instances and know how to do it. You can do this by using

variables with the hard-coded image OCIDs. In this chapter, we’ve used data sources

to dynamically fetch the OCID of a CentOS 7 image. While this approach is absolutely

fine for a short-living PoC or demo, you mustn’t allow this to be the case for production

systems. If you dynamically fetch the OCID and a newer image version is introduced in

between your builds, your instances may be terminated and relaunched simply because

Terraform changed its base image. A similar recommendation to provide the values as

hard-coded variables has been issued for availability domains.

 Summary
This chapter introduced the three ways to automate Oracle Cloud Infrastructure. At

the beginning, I explained the role of the OCI REST API with a special focus on the

security. You learned what information is required to sign a request and how to prepare

the necessary API signing keys. Next, you read about the Python SDK for Oracle Cloud

Infrastructure, starting from installation going through the configuration up to the

point where you executed two simple actions on OCI from the interactive Python shell.

Going further, you familiarized yourself with the CLI, discovering similarities with the

Python SDK it is based on. The largest part of this chapter focused on applying the

infrastructure-as-code principles using Terraform. You provisioned a simple, one-server

infrastructure, performed a smoke test, and destroyed this sample setup. Afterward, I

explained the infrastructure code in detail. Following that, you learned about the role of

a Terraform state file. Finally, you read some recommendations related to automation. In

the next chapter, we will look closer at identity and access management in the context of

project environment management.

Chapter 3 automating Cloud infrastruCture

179
© Michał Tomasz Jakóbczyk 2020
M. T. Jakóbczyk, Practical Oracle Cloud Infrastructure, https://doi.org/10.1007/978-1-4842-5506-3_4

CHAPTER 4

Cloud Security and
Project Environments
In this chapter, we will take a top-down approach and think about how to properly

organize your cloud resources around projects, environments, and solutions you are

about to design and run on Oracle Cloud Infrastructure.

 Projects, Environments, and Systems
Throughout the years, we have gotten used to delivering information technology

solutions in a collaborative effort that follows a particular organizational process. The

process is usually built around more or less a formal plan and lasts until the moment

when specific goals are achieved or conditions are met. To reference the entire endeavor,

we typically call it a project. What is characteristic about nearly every project is its

temporariness. The beginning, any optional intermediate goals (sometimes called

milestones), and the expected ultimate end goal have well-defined expected completion

dates. Contemporary cloud-oriented information technology projects generally aim

either at transforming an existing on-premise solution and bringing its functionality to

the cloud or at designing a completely new cloud-native solution.

The product of a cloud-oriented project is most commonly a set of applications

running on a virtual cloud infrastructure. The software landscape of an organization

can be indeed complex. The larger or more technology-oriented an organization is, the

greater the number and types of applications are. To avoid ambiguity and be able to

reference the applications or groups of tightly associated applications, we can use the

term system. All in all, the application landscape consists of a number of systems that are

eventually used to power a broad range of business processes. Usually, the majority of

systems are interconnected with each other and require some degree of integration.

180

The software development lifecycle is nearly always iterative because complex

problems can be truly solved only if they are split into manageable phases. Developers

gradually build or migrate applications step by step in small chunks of features. In some

cases, incremental changes can introduce some regression, understood as defects that

make previously working functionality simply fail. To alleviate the risk of regression, it

is crucial that the entire solution gets fully tested at least once on each milestone. This

is done through the so-called regression tests. Furthermore, some major milestones

and the final handover have to be approved by the customer. As a result, the software

becomes the subject of the so-called acceptance tests. While developers change the

software they are building frequently, the regression and acceptance tests do require

some degree of stability. The traditional approach solves that through the use of different

environments for different purposes. Developers work with one or more development

environments where they deploy all intermediary versions of software. Even if you rely on

good coverage of automated unit tests, these environments may still be rather unstable.

This is why only selected versions are elevated to the so-called releases and deployed in

a test environment where more sophisticated, either manual or automated, regression

and acceptance tests take place.

Successfully tested and approved releases are usually elevated to an environment

where all the production systems operate. We often reference this environment as the

production environment. What is worth noting is the fact that production systems are the

subject of routine operations, and, in the general run of things, we no longer talk about

them in the context of individual projects. Furthermore, you can have multiple projects

that contribute to a single production environment but impact only relatively loosely

coupled production systems each. This is conceptually shown in Figure 4-1.

Figure 4-1. Project environments and production systems

Chapter 4 Cloud SeCurity and projeCt environmentS

181

The cloud resources, such as compute instances, object storage buckets, or virtual

networks, used across different project environments and production systems require

separate management permissions. While you can let a large group of developers manage

the cloud resources used across various development and test environments, you would

rather appoint a much smaller group of people to look after your production systems.

Moreover, it is usually not necessary for developers working on one project to see the

cloud resources used by other projects. To enforce the proper access levels, you have to

be able to group selected cloud resources in some kind of logical groups to which you can

attach dedicated permission polices that will decide who can take what kind of actions on

the cloud resources a particular group contains. The metered usage of selected types of

cloud resources such as compute instances or load balancers incur financial costs. From

a financial point of view, nearly all organizations prefer to measure the costs incurred by

individual projects and production systems. The more granular cost split, the better. In

this way, the cloud charges can be properly assigned to their appropriate cost centers

and eventually accounted in a correct way. Again, you need to be somehow able to group

selected cloud resources to calculate the charges these groups cause.

 Compartments
Oracle Cloud Infrastructure uses compartments to group related cloud resources. Nearly

every cloud resource, such as compute instance, object storage bucket, or managed

Kubernetes cluster, must belong to just one compartment. You decide in which

compartment a newly created cloud resource will exist while creating that resource. If

you find out you need to move a resource to a different compartment, you will have to

terminate the old one and provision a new one with the same configuration in a target

compartment, unless the particular cloud resource type supports moving between

compartments. Compartments provide logical isolation, which makes it much easier to

govern the management permission policies and track the costs incurred by the related

groups of resources. The isolation is purely logical. This means that it is still technically

possible to let the resources, for example, compute instances, in one compartment

Chapter 4 Cloud SeCurity and projeCt environmentS

182

communicate with the resources, for example, other compute instances and object

storage buckets, in another compartment. There are three reasons to use compartments.

• Easier resource management

• Granular access control

• Cost split

First, it is easier to understand what the assets in your cloud tenancy are and manage

these resources if you logically group the related resources. In this way, you are able to

apply more precise filters to your queries and receive shorter and more accurate lists

of results. This becomes even more visible as the number and the variety of your cloud

resources start to grow. Second, compartments normally become the primary scope of

your access control policy statements. The statements are stored in documents called

identity and access management policies. Each statement will allow some kind of access

to a particular type of cloud resource that exists in a given compartment. At this stage,

it is worth noting that child compartments inherit the access management policies

from their parent compartments. Third, you can filter costs by compartment and know

what cloud resource consumption costs are incurred by each project environment and

production system as long as you choose to use different compartments for each of them.

Compartments are global, and every individual compartment spans all regions

your cloud account is subscribed to. It is possible and in many cases advised to arrange

your compartments in a hierarchical structure that can consist of up to six levels of

child compartments. If you are working on a single proof-of-concept project or are

just learning OCI, you will most probably store all your cloud resources in a single

compartment. You could call it Sandbox or anything more meaningful to you. As soon as

you consider working with multiple projects and running a set of production systems in

your cloud tenancy, you ought to carefully plan the compartment hierarchy. How would

you usually approach this task? Well, it is easy to spot that the most natural candidates

to derive your compartment hierarchy from are project environments and production

systems. Why? Simply because they are the ones that usually provide the typical context

for resource management, access control, and cost tracking—the three main reasons to

use compartments. This approach is illustrated in Figure 4-2.

Chapter 4 Cloud SeCurity and projeCt environmentS

183

There is always one root compartment in your cloud account. This is the root

node in our compartment hierarchy as well. If we were to follow the example, we

would create two separate compartments: one for projects (Projects) and one for

production systems (Systems). Next, we would create three child compartments

inside the Systems compartment: MID, IDM, and IP. In this way, the cloud resources

that logically belong to the IDM production system would reside in the Systems/IDM

compartment. Similarly, we would create two child compartments inside the Projects

compartment: ImageProcessing and ImageDataMangement. Subsequently, we would

finally create two further child compartments in each project-specific compartment

for the development and test environments. Again, this would let you keep the assets

specific to the Image Processing project and its development environment inside

the Projects/ImageProcessing/Development compartment. It’s as simple as that.

Figure 4-3 presents the expected compartment structure as you would see it in the OCI

Console compartment scope filter.

Figure 4-2. Deriving compartment hierarchy

Chapter 4 Cloud SeCurity and projeCt environmentS

184

We will now move to the practical part and see what the options are to display, create,

and delete compartments. If you’ve read Chapter 2, you should already know how to create

a compartment using the OCI Console. This was one of our first tasks when we created

a Sandbox compartment. To browse through the compartments in the OCI Console, you

need to go to Menu ➤ Identity ➤ Compartments.

What you are going to see is a list of your level 1 compartments, as shown in Figure 4- 4.

Figure 4-3. OCI Console compartment scope filter

Figure 4-4. Compartment list (level 1) in the OCI Console

Chapter 4 Cloud SeCurity and projeCt environmentS

185

You need to click the name of a particular compartment to see its details as well as

a detailed list of the child compartments it contains. Here, you can alter the name and

description of a compartment, check its OCID, and manage its child compartments.

Figure 4-5 presents the Compartment Details view for the Sandbox compartment.

Figure 4-5. Compartment Details view in the OCI Console

To add a new child compartment in the OCI Console, you just need to click the

Create Compartment button and provide the required details.

Note the code snippets from this book have been tested on macoS and
Windows Subsystem for linux. moreover, all commands should work on the major
linux distributions. if you are using Windows and do not want to use Windows
Subsystem for linux, you can always run linux on a vm. Furthermore, the majority
of code snippets may also work in Git Bash on Windows.

As expected, you can use the OCI CLI to create a new compartment. If you’ve

completed all the steps described in Chapter 3, your CLI should be already configured to

work with the Sandbox compartment by default. Run this command to output the name

of the compartment set in your CLI settings as the default:

Chapter 4 Cloud SeCurity and projeCt environmentS

186

$ oci iam compartment get --output table --query 'data.{Name:"name"}'

+---------+

| Name |

+---------+

| Sandbox |

+---------+

If you see a different name and would still like to create a child compartment in the

Sandbox compartment, you can either adapt the oci_cli_rc file or use the -c parameter

that takes any valid compartment OCID. The second option is faster and gives you more

flexibility. I have described both ways in the previous chapter. For example, to run the

same command in the context of a different compartment, you can do the following:

$ oci iam compartment get -c "ocid1.compartment.oc1..aa.........bpfl6q"

--output table --query 'data.{Name:"name"}'

+---------+

| Name |

+---------+

| Systems |

+---------+

Tip you can use the -c parameter with every Cli command to set the context of
that individual command to any compartment of your choice.

As soon as we make sure that our CLI commands are executed in the context of the

expected compartment, we are ready to create a new child compartment. To do so, just

run this command and do not forget to use the -c parameter if needed:

$ EXP_COMPARTMENT_OCID=`oci iam compartment create --name Experiments

--description "Sandbox area for experiments" --query "data.id" | tr -d '"'`

The preceding command has created a new compartment called Experiments as

a child compartment to the Sandbox compartment. At this stage, you should be able to

see the newly created compartment in the list of child compartments for the Sandbox

compartment, as shown in Figure 4-6.

Chapter 4 Cloud SeCurity and projeCt environmentS

187

From now on, it is possible to create various cloud resources inside this

compartment in any region and any availability domain of your choice. The only thing

to remember is to choose this compartment for the context of your actions. In the case of

the OCI Console, you do it by selecting the compartment name in the List Scope combo

box shown in Figure 4-7.

Figure 4-6. Child compartment in the OCI Console

Figure 4-7. Selecting the compartment in the OCI Console

Like every other Oracle Cloud Infrastructure resource, compartments are uniquely

identified through OCIDs. You can read more about them in Chapter 2. At any time,

you can easily change a compartment’s name and description, but its OCID remains

 immutable.

Tip if you’ve made a typo in the compartment’s name, do not delete it, but just
rename it.

It is possible to delete unneeded compartments. You can perform this operation

both in the Console or using the CLI. The action is asynchronous and usually takes

some time. Prior to that, you still have to terminate and delete all resources and

subcompartments inside the compartment you are about to delete; otherwise, you won’t

be allowed to do so. This is a command that initiates compartment deletion:

Chapter 4 Cloud SeCurity and projeCt environmentS

188

$ oci iam compartment delete -c "$EXP_COMPARTMENT_OCID"

Are you sure you want to delete this resource? [y/N]: y

{

 "opc-work-request-id": "ocid1.identityworkrequest.oc1..aa.........rejw7a"

}

The output indicates the asynchronous nature of this action. Furthermore, if you

look at the list of child compartments to the Sandbox compartment, you will probably see

that the Experiments subcompartment is still being deleted, as shown in Figure 4-8.

Figure 4-8. Deleting a compartment

Last but not least, there is a service limit on the number of compartments. At the

time of writing, it is set to 50 per tenancy. If you find out you need more, you can always

request a service limit increase. To do so in the OCI Console, you need to follow these

steps:

 1. Go to Menu ➤ Governance ➤ Limits, Quotas and Usage.

 2. Click “Request a service limit increase”.

 3. Fill in the form and click Submit Request.

Earlier in this section, I mentioned that one of the main motivations to use

compartments is to be able to analyze the costs of individual production systems,

projects, or even environments. In the OCI Console, you can do the following:

 1. Go to Menu ➤ Account Management ➤ Cost Analysis.

 2. Select a compartment in the filter.

 3. Choose the desired period of time.

 4. Click Apply Filters.

Figure 4-9 presents the costs incurred by the Sandbox compartment since the

beginning of the calendar year in Polish Zloty (PLN), which is the local currency in my

home country.

Chapter 4 Cloud SeCurity and projeCt environmentS

189

We are now ready to move to another important topic, which is the user management.

 Users
Each action performed on Oracle Cloud Infrastructure resources is always done on

behalf of a named user. As you read Chapter 3, you learned that every API call requires

the OCID of a user simply to be able to sign a request. No matter if you are using the

Console, API, SDK, CLI, or Terraform, you will always need a user account. Oracle Cloud

Infrastructure supports two types of user accounts.

• Local users

• Federated users

When you subscribe to a new cloud account, there is a default administrator

user for the cloud account created in the Oracle Identity Cloud Service (IDCS). The

e-mail address that is used during registration becomes the username of this global

administrator user. This is a federated user account. As a matter of fact, all tenancies are

by default federated with IDCS, but you are free to switch to any other SAML-compliant

identity provider or create nonfederated users that are local to OCI. If you are not

Figure 4-9. Viewing costs per compartment in the OCI Console

Chapter 4 Cloud SeCurity and projeCt environmentS

190

sure whether you understand, do not worry. Let me explain. When you want to sign

in to the OCI Console, you are presented with a two-section login screen, as shown in

Figure 4- 10. The section in the left part is for federated users. This will take you to the

single-sign on (SSO) login screen delivered by your identity provider. By contrast, you

will use the section on the right to sign in as a local, nonfederated user.

Figure 4-10. Sign-in screen in the OCI Console

Throughout this book, until this point, I’ve assumed you were using the default

administrator user. This is going to change now because we are about to create and

switch to a less-privileged, compartment administrator user. To demonstrate access

policies in action, we are going to create a second local user with nearly no access rights.

In the course of the book, we will be granting more and more access rights to this second

local user depending on the resources used in various exercises.

Caution if you are not the tenancy owner, you were probably given a user by
your administrator. yet, it is still possible that your user has been added to the
tenancy’s administrators group in idCS. if this is not the case and you want to
complete the exercises in this book, you need to ask your tenancy administrator to
put your user into an oCi group that has full control over a chosen compartment.
in this case, you will need to work with this particular compartment.

Chapter 4 Cloud SeCurity and projeCt environmentS

191

First, we are going to create a new, local, nonfederated user who will become the

Sandbox administrator. This operation is typically performed in the OCI Console or using

the CLI. This is how you apply the first method:

 1. Go to Menu ➤ Identity ➤ Users.

 2. Click Create Users.

 3. Provide sandbox-admin as the name, add some description, and

click Create.

Figure 4-11. Nonfederated user in the OCI Console

A new user will be shown, as in Figure 4-11, in the OCI Console. This will be the local

administrator for the Sandbox compartment. Now, we are going to create another local

user, sandbox-user, this time using the CLI. The command we are about to use requires

the tenancy OCID to be used as one of the parameters. You should be able to find this

value in your CLI configuration file, most probably available at the path ~/.oci/config

unless you’ve used a custom path for the CLI configuration file. Alternatively, you can

also find this in the OCI Console under Menu ➤ Administration ➤ Tenancy Details. We

are now ready to execute the following CLI command:

$ TENANCY_OCID=`cat ~/.oci/config | grep tenancy | sed 's/tenancy=//'`

$ oci iam user create --name sandbox-user --description "Sandbox user"

--query "data.id" -c $TENANCY_OCID

"ocid1.user.oc1..aa............dzqpxa

First, we assigned the tenancy OCID to a bash variable to simplify the syntax of

the CLI command that follows. Finally, we used an iam user create command that

leverages a JMESPath query to output the newly assigned user OCID.

Let me use this opportunity to show you how to build some more advanced

JMESPath queries. We are going to list the names of all OCI users whose names start with

the sandbox word. We expect to see a list of two names of the users we’ve just created.

Again, we have to pass the tenancy OCID as a parameter.

Chapter 4 Cloud SeCurity and projeCt environmentS

192

$ oci iam user list -c $TENANCY_OCID --query "data [?starts_

with(name,'sandbox')].name" --all

[

 "sandbox-admin",

 "sandbox-user"

]

At this point of the time, there are two new nonfederated local users ready. We still

have to generate a one-time password for them; otherwise, neither of them would be

able to sign in to the OCI Console as one of these users. This is how you do it for the

sandbox- user user:

$ USER_OCID=ocid1.user.oc1..aa.........dzqpxa

$ oci iam user ui-password create-or-reset --user-id $USER_OCID --query

"data.password"

"&gDX9F)iAP_[2E16XD)r"

Now, you are ready to open another browser and try to sign in, this time as a

nonfederated user, as presented in Figure 4-12. Because this is the first login attempt

after the password has been reset, you will be prompted to provide a new password.

Figure 4-12. Signing in as a nonfederated user

Chapter 4 Cloud SeCurity and projeCt environmentS

193

At first glance, the OCI Console looks the same. To make sure you’ve accessed it as

one of the new users, please click the circular silhouette icon in the top-right corner to

expand the active user menu, as shown in Figure 4-13. You should see there the user

name, in our case sandbox-user. Click the name or User Settings to open the user

profile.

Figure 4-13. Active user menu in the OCI Console

Oracle Cloud Infrastructure IAM prohibits the newly created users from having

any access to cloud resources by default. The only things you are able to do, as a newly

created user who is not assigned to any group, are just the basic changes in the user

settings such as a password change or an API key upload. If you try to list any kind of

cloud resources in various compartments or list the existing users, you will see nothing,

as shown in Figure 4-14.

Chapter 4 Cloud SeCurity and projeCt environmentS

194

Caution Before you continue, please create a password for the sandbox- admin
user and log in for the first time to reset it so that you are able to sign in to the oCi
Console. this is exactly what you’ve just done for the sandbox-user user. you do
not need to use the Cli again. it is also possible to reset the user password in the
oCi Console in the user details view for a given user.

We are going to let the two new users make remote API calls. You will need to

generate two API signing keypairs, one for each of the two new local users, and upload

their public keys under their accounts. You can find more information about the API

signing keys in Chapter 3. This is the fast track:

$ cd ~/.apikeys

$ openssl genrsa -out api.sandbox-user.pem -aes128 2048

Generating RSA private key, 2048 bit long modulus

.........+++

..+++

Figure 4-14. Insufficient access in the OCI Console

Chapter 4 Cloud SeCurity and projeCt environmentS

195

e is 65537 (0x10001)

Enter pass phrase for api.sandbox-user.pem:

Verifying - Enter pass phrase for api.sandbox-user.pem:

$ chmod go-r api.sandbox-user.pem

$ openssl rsa -pubout -in api.sandbox-user.pem -out api.sandbox-user.pem.

pub

Enter pass phrase for api.sandbox-user.pem:

writing RSA key

$ openssl genrsa -out api.sandbox-admin.pem -aes128 2048

Generating RSA private key, 2048 bit long modulus

.................................+++

...+++

e is 65537 (0x10001)

Enter pass phrase for api.sandbox-admin.pem:

Verifying - Enter pass phrase for api.sandbox-admin.pem:

$ chmod go-r api.sandbox-admin.pem

$ openssl rsa -pubout -in api.sandbox-admin.pem -out api.sandbox-admin.pem.

pub

Enter pass phrase for api.sandbox-admin.pem:

writing RSA key

$ ls -l | awk '{print $1, $9}'

total

-rw------- api.sandbox-admin.pem

-rw-r--r-- api.sandbox-admin.pem.pub

-rw------- api.sandbox-user.pem

-rw-r--r-- api.sandbox-user.pem.pub

Now, you can upload the public keys (.pub suffix) to the corresponding user accounts.

We are going to use the CLI, but, if you want, you can do it in the OCI Console as well.

First, make sure the TENANCY_OCID bash variable is still set to the tenancy OCID.

$ echo $TENANCY_OCID

ocid1.tenancy.oc1..aa.........

To upload a public key, you need to know the OCID of the user. You can either read it

in the OCI Console or use the CLI to make a query, just like this:

Chapter 4 Cloud SeCurity and projeCt environmentS

196

$ SANDBOX_ADMIN_OCID=`oci iam user list -c $TENANCY_OCID --query

"data[?name=='sandbox-admin'] | [0].id" --all --raw-output`

ocid1.user.oc1..aa.........7d5dca

Now, let’s upload the public key for the sandbox-admin user.

$ oci iam user api-key upload --user-id $SANDBOX_ADMIN_OCID --key-file

~/.apikeys/api.sandbox-admin.pem.pub --query "data.fingerprint"

"91:64:1b:4e:4e:35:4a:06:b2:8f:6f:53:ae:7d:0d:ee"

Typically, you configure the CLI on your machine to send API requests on behalf of

just a single user. As a result, you are using only the default profile in your ~/.oci/config

file. Listing 4-1 displays how the structure of this file looks at the moment, after having

completed the exercises from Chapter 3.

Listing 4-1. OCI CLI Configuration File

[DEFAULT]

tenancy=...

region=...

user=...

fingerprint=...

key_file=...

pass_phrase=...

There is only one profile, which is the default profile. Every OCI CLI command uses

the details from the default profile to sign requests and make API calls. If you’ve followed

the exercises from Chapter 3, the default configuration profile corresponds to the

tenancy administrator superuser.

Luckily for us, it is possible to create more profiles. In this way, you will be able to

execute different CLI commands on behalf of different OCI users on a single machine.

Open the config file in a chosen text editor.

$ vi ~/.oci/config

Under the default profile, please add a new profile called SANDBOX-ADMIN and provide

the user details for the sandbox-admin user, which you can find in this section. The new

part is shown in bold in Listing 4-2.

Chapter 4 Cloud SeCurity and projeCt environmentS

197

Listing 4-2. OCI CLI Configuration File with Multiple Profiles

[DEFAULT]

tenancy=...

region=...

user=...

fingerprint=...

key_file=...

pass_phrase=...

[SANDBOX-ADMIN]

user=ocid1.user.oc1..aaaaaaaa3n5.........7d5dca

fingerprint=91:64:1b:4e:4e:35:4a:06:b2:8f:6f:53:ae:7d:0d:ee

key_file=~/apikeys/api.sandbox-admin.pem

pass_phrase=put-here-sandbox-admin-private-key-password

From now on, every time you add --profile SANDBOX-ADMIN to your CLI command,

the CLI will use the four parameters (user, fingerprint, key_file, and pass_phrase)

from the SANDBOX-ADMIN profile and the remaining two (tenancy and region) from the

DEFAULT profile.

If you try executing one of the commands, but this time as the sandbox-admin user

through the use of the SANDBOX-ADMIN profile, you will encounter an error.

$ oci iam user list -c $TENANCY_OCID --query "data [?starts_

with(name,'sandbox')].name" --all --profile SANDBOX-ADMIN

ServiceError:

{

 "code": "NotAuthorizedOrNotFound",

 "message": "Authorization failed or requested resource not found",

 "opc-request-id": "DE........./411.........E1F/B6A.........A8B",

 "status": 404

}

The reason is obvious. Oracle Cloud Infrastructure denies any kind of access to cloud

resources by default. The sandbox-admin user does not belong to any group; therefore,

there are no access policies that would grant some access rights to this user. It is time to

discuss how the policies work.

Chapter 4 Cloud SeCurity and projeCt environmentS

198

Note if you are still logged into the oCi Console as either the sandbox-user
or the sandbox-admin user, please log out and log in again as the tenancy
superuser. alternatively, you can use a different browser.

One more important remark: before you read on, please upload the public key as

a new API key for the sandbox- user user. You have already learned how. Please do it

straightaway. We will need it in the future chapters.

 Groups and Policies
The access to various types of cloud resources is given to the groups, not the individual

users. We will focus on local groups only, but you may benefit from knowing that it is

also possible to map your identity provider groups to the local groups. Policy statements

define what kind of access is allowed to whom and in which scope. We will take a closer

look at policy statements in a second. First, let’s discuss groups.

 Groups
A group is basically a collection of users. A user can belong to more than one group. It

is possible to dynamically add and remove users from groups. You create groups in a

similar manner as you’ve created users usually using the Console or the CLI. It is time to

create a new group for the sandbox-admin user.

 1. Go to Menu ➤ Identity ➤ Groups.

 2. Click Create Group.

 3. Provide sandbox-admins as the group name, description, and click

Create.

Figure 4-15 presents the groups in your cloud tenancy. The Administrators group

is the default group present in every cloud account. At any given time, Oracle Cloud

Infrastructure enforces that there must be at least one user in this group; otherwise, you

could easily get unintentionally locked out from your account.

Chapter 4 Cloud SeCurity and projeCt environmentS

199

You may remember as I mentioned that cloud resources in Oracle Cloud

Infrastructure are uniquely identified not by their names but by the OCIDs. This is true

for the groups as well, with one small exception. While it is usually technically possible to

provision multiple cloud resources of the same type with the same name, you cannot do

it either with the groups or with the users. There is an additional constraint that does not

allow any name duplicates among groups or users.

We are going to create another group, this time for the regular users for the Sandbox

compartment such as the sandbox-user. This time, for the sake of variety, we will use the

CLI. Please remember to make sure the TENANCY_OCID bash variable value is still set to

the OCID of your tenancy before running this command:

$ oci iam group create --name sandbox-users --description "Group for the regular

users of the Sandbox compartment" --query "data.id" -c $TENANCY_OCID

"ocid1.group.oc1..aa.........rj2sba"

Run this CLI command to list the groups whose names start with sandbox. We are

going to format the output as a table.

$ oci iam group list -c $TENANCY_OCID --all --query "data[?starts_

with(name,'sandbox')].{Name:name,OCID:id}" --output table

+----------------+------------------------------------+

| Name | OCID |

+----------------+------------------------------------+

| sandbox-admins | ocid1.group.oc1..aa.........hlotwa |

| sandbox-users | ocid1.group.oc1..aa.........rj2sba |

+----------------+------------------------------------+

Figure 4-15. User groups in the OCI Console

Chapter 4 Cloud SeCurity and projeCt environmentS

200

The two new groups are still empty. In the OCI Console, adding or removing users

from a group can be done in two ways. The first option is to use the group details view,

just like this:

 1. Go to Menu ➤ Identity ➤ Groups.

 2. Click the name of the group to which you want to add a user.

 3. On the Group Members tab, click Add User to Group.

 4. Select the user you want to add to the group.

Alternatively, you can perform the same operation from the user details screen.

 1. Go to Menu ➤ Identity ➤ Users.

 2. Click the name of the user you want to add to a group.

 3. On the Groups tab, click Add User to Group.

 4. Select the group to which you want to add to the user.

Finally, you are more than welcome to do this task using the CLI. The iam group

add-user command requires the user OCID and the group OCID, so either find them in

the OCI Console or run these two queries:

$ USER_OCID=`oci iam user list -c $TENANCY_OCID --query

"data[?name=='sandbox-admin'] | [0].id" --all --raw-output`

$ GROUP_OCID=`oci iam group list -c $TENANCY_OCID --query

"data[?name=='sandbox-admins'] | [0].id" --all --raw-output`

To add a user to a group, use the oci iam group add-user CLI command.

$ oci iam group add-user --user-id $USER_OCID --group-id $GROUP_OCID

The sandbox-admin user gets immediately added to the sandbox-admins group. You

can verify it in the OCI Console in the group details view, as shown in Figure 4-16.

Chapter 4 Cloud SeCurity and projeCt environmentS

201

Furthermore, it is feasible to employ the CLI command iam group list-users to

fetch the list of group members of a particular group. To do so, please use the following

command:

$ oci iam group list-users --group-id $GROUP_OCID --query "data[*].name" -c

$TENANCY_OCID --all

[

 "sandbox-admin"

]

Now, before you read on, please add the sandbox-user user to the sandbox-users

group. We will need it in the future chapters. At this stage, you should have the two users

added to their corresponding groups. Each user should have its unique keypair already

in place and the public key uploaded. The expected setup is conceptually shown in

Figure 4-17.

Figure 4-16. Group members in the OCI Console

Figure 4-17. Users and groups for Chapter 4

Chapter 4 Cloud SeCurity and projeCt environmentS

202

As a next step, please add a new profile for the sandbox-user user to the ~/.oci/

config file like you’ve done for the sandbox-admin user in the previous section. Listing 4-3

presents the expected structure of your ~/.oci/config file.

Listing 4-3. OCI CLI Configuration File for Chapter 4

[DEFAULT]

tenancy=...

region=...

user=...

fingerprint=...

key_file=...

pass_phrase=...

[SANDBOX-ADMIN]

user=ocid1.user.oc1..aaaaaaaa3n5.........7d5dca

fingerprint=91:64:1b:4e:4e:35:4a:06:b2:8f:6f:53:ae:7d:0d:ee

key_file=~/apikeys/api.sandbox-admin.pem

pass_phrase=put-here-sandbox-admin-private-key-password

[SANDBOX-USER]

user=ocid1.user.oc1..aaaaaaaatimmpj37ao............cdzqpxa

fingerprint= 61:68:a5:1c:40:ef:51:fd:1a:74:6b:d9:9f:1c:b2:b8

key_file=~/apikeys/api.sandbox-user.pem

pass_phrase=put-here-sandbox-user-private-key-password

Last but not least, we are going to create two profiles in the ~/.oci/oci_cli_rc

file to set the default compartment for each CLI query. Please replace the OCIDs in

Listing 4- 4 with the OCID of your Sandbox compartment. If you do not remember

what kind of file that is, you will find more information in Chapter 3.

Listing 4-4. OCI CLI RC File for Chapter 4

[DEFAULT]

compartment-id = ocid1.compartment.oc1..aa.........gzwhsa

[SANDBOX-ADMIN]

compartment-id = ocid1.compartment.oc1..aa.........gzwhsa

[SANDBOX-USER]

compartment-id = ocid1.compartment.oc1..aa.........gzwhsa

All set? Let’s explore how the access control to cloud resources is organized.

Chapter 4 Cloud SeCurity and projeCt environmentS

203

 Policy Statements
How does privilege management work? You define which group is entitled to perform

particular actions on specific cloud resource types using policy statements. Each policy

statement refers either to one particular compartment or to the entire tenancy.

Figure 4-18 illustrates a simple policy statement that grants read-only access (read policy

verb) over selected cloud resource types that belong to the instance-family aggregate

resource type to the members of the groupABC. The aggregate resource type is a logical

grouping of real cloud resource types such as compute instances or instance images.

The sample policy statement refers only to the cloud resources that exist inside the

projectABC compartment.

Figure 4-18. IAM policy statement

While it should be pretty clear to understand what roles are played by a group of

users and a compartment in a policy statement, you may still need some additional

explanation of the policy verb and the resource type.

There are various types of cloud infrastructure resources you can provision in your

cloud account. A compute instance and an object storage bucket are examples of cloud

resources. Some cloud resource types are more related to each other than the others. An

instance image is used to provision compute instances. The instances can be managed

in pools. To launch an instance pool, an instance configuration is required. As you can

see, there is some degree of interdependency between all four resource types I’ve given

as an example. From the access control point of view, you will usually grant the same

Chapter 4 Cloud SeCurity and projeCt environmentS

204

access permissions to all resource types that belong to one family of related resource

types. For this reason, Oracle Cloud Infrastructure defines the so-called aggregate

cloud resources, such as instance-family or virtual-network-family, that are logical

groupings of the existing cloud resource types.

Tip it makes little sense to include the list of all available resource types that can
be used in your policy statements because the list is steadily growing. please refer
to the policy reference in the official documentation.

A policy verb defines the access level to a cloud resource. There are four levels

available: inspect, read, use, and manage. The inspect access is basic and usually lets

the group members only list the resources. The read access includes the same scope

as the inspect access but extended with the ability to read the details of the cloud

resources. The use access typically allows the group members to perform all actions

in the scope of the read access as well as starting, stopping, and updating the existing

cloud resources. Finally, the manage access grants all permissions for the cloud resource

type. The key thing about policy verbs is that their exact meaning is highly contextual

and depends on the resource type they are prefixing in the policy statement. Let me

explain it using an example. Table 4-1 presents how the policy verbs map to individual

permissions in the case of the load-balancers resource type. Each permission

effectively allows the group members to call a particular set of APIs.

Chapter 4 Cloud SeCurity and projeCt environmentS

205

As you can see in Table 4-1, in the case of the load-balancers resource type, the

inspect policy verb maps to just one LOAD_BALANCER_INSPECT permission, which

essentially gives access to four APIs: ListLoadBalancers, ListShapes, ListPolicies,

and ListProtocols. These four APIs give some basic insights into the available load

balancer policies, shapes, protocols, and load balancers present in the scope of the

given compartment. Usually, the API names are self-explanatory, but if you want to be

sure what kind of operation on cloud resources the APIs really let you perform, you can

always read the API reference.

If you look at the table again, you will spot that a load balancer can be created

or deleted only by the group members whose group was granted the manage policy

verb over the load-balancers resource type. This is not a big surprise. What is more

interesting is the fact that a backend set can be created or deleted already when there is a

policy statement with the use policy verb. How should we understand it? Well, a backend

set can exist only in the context of a load balancer as its child resource. In this way, you

Table 4-1. Policy Verbs for the load-balancers Resource Type

Verb Permissions Covered APIs

inspect load_BalanCer_inSpeCt listloadBalancers

listShapes

listpolices

listprotocols

read inspect permissions +

load_BalanCer_read

inspect apis +

GetloadBalancer

and others

use read permissions +

load_BalanCer_update

read apis +

updateloadBalancer

CreateBackendSet

deleteBackendSet

updateBackendSet

and others

manage use permissions +

load_BalanCer_Create

load_BalanCer_delete

use apis +

CreateloadBalancer

deleteloadBalancer

Chapter 4 Cloud SeCurity and projeCt environmentS

206

could delegate the creation of backend sets to the users of the load balancer just as you

let them update an existing load balancer. However, the creation or termination of the

parent resource, namely, the load balancer, is limited to the managers.

Tip policy verbs are highly contextual, and their exact meaning depends on the
resource type they are prefixing in the policy statement. you need to refer to the
documentation to find out more: https://docs.cloud.oracle.com/iaas/
Content/Identity/Reference/policyreference.htm.

Let’s discuss a couple of examples for IAM policy statements. I would like you to get

some general view before we move into creating the statements for our new IAM groups.

If your intention is to grant all kinds of permissions over a particular compartment to the

group of admins for that compartment, you can do it with just one IAM policy statement.

allow group sandbox-admins to manage all-resources in compartment Sandbox

Let’s look at another example. To allow the members of the sandbox-users group to

perform all load-balancer-specific operations in the Sandbox compartment, you would

simply create this policy:

allow group sandbox-users to manage load-balancers in compartment Sandbox

What if you would like to explicitly deny some selected permissions that belong

to the policy verb you are using? For example, the manage policy verb in the context

of the load-balancers resource type will let you perform all actions, including load

balancer creation and deletion. If you would like to exclude the LOAD_BALANCER_DELETE

permission, you can use policy statement condition.

allow group sandbox-users to manage load-balancers in compartment Sandbox

where request.permission != 'LOAD_BALANCER_DELETE'

Policy statement conditions can be defined for permissions (e.g., request.

permission != 'LOAD_BALANCER_DELETE') as well as individual API operations (e.g.,

request.operation != 'DeleteLoadBalancer'). In this way, it is possible to tune the

policy statements and make them as granular as needed. Sometimes, you may even

build more complex conditions that reference more than one permission or operation.

I will give now further examples. This policy statement permits the group members to

list the load balancers (ListLoadBalancers operation), even though the policy verb

Chapter 4 Cloud SeCurity and projeCt environmentS

https://docs.cloud.oracle.com/iaas/Content/Identity/Reference/policyreference.htm
https://docs.cloud.oracle.com/iaas/Content/Identity/Reference/policyreference.htm

207

inspect would normally allow more operations, such as listing the available shapes

(ListShapes operation) or protocols (ListProtocols operation).

allow group sandbox-admins to inspect load-balancers in compartment Sandbox

where all { request.operation != 'ListShapes', request.operation !=

'ListProtocols', request.operation != 'ListProtocols' }

The where all clause is used to make sure that all conditions are met. This approach

is taken if you want to explicitly deny multiple permissions or operations. If you would

prefer to explicitly allow multiple permissions or operations, you can use the where any

clause. In the next example, the policy statement permits the group members to perform

only three operations (ListShapes, ListPolicies, and ListProtocols), although the

policy verb inspect would normally allow one operation more.

allow group sandbox-admins to inspect load-balancers in compartment

Sandbox where any { request.operation = 'ListShapes', request.operation =

'ListPolicies', request.operation = 'ListProtocols' }

As a result, the fourth remaining operation (ListLoadBalancers) that falls into the

inspect policy verb for the load-balancers resource type will be denied.

In this section, we’ve been discussing individual policy statements. I have not

mentioned, however, how they are actually created in Oracle Cloud Infrastructure. We

are going to do this now.

 Policies
Individual policy statements cannot exist on their own but have to be contained in the

so-called policies. A policy is a cloud resource that consists of one or more statements that

determine the access a group of users has over a particular class of cloud resources in a

particular compartment or the entire tenancy. Individual policy statements cannot exist

outside of a policy; therefore, you will always work with policy statements contained in

policies. At this stage, we need to highlight one important notion. The users and groups do

exist in the scope of the entire tenancy. We can say they are global. Policies, on the other

hand, are created in compartments, just like the majority of regular cloud resources such

as compute instances or virtual networks. At the time of writing, a new cloud account

arrives with two policies by default. To see them using the OCI Console, take these steps:

 1. Go to Menu ➤ Identity ➤ Policies.

 2. Make sure that the root compartment is selected.

Chapter 4 Cloud SeCurity and projeCt environmentS

208

Figure 4-19 shows the two default policies. Looking at the creation time of the two

policies, you can even guess around what time my cloud tenancy was actually brought

into existence.

Figure 4-19. Default policies in the OCI Console

If you prefer to use the CLI, this is the query to list the policies that are present in the

root compartment:

$ oci iam policy list -c $TENANCY_OCID --all --query 'data[*].{Name:name,St

atements:length(statements)}' --output table

+---------------------+------------+

| Name | Statements |

+---------------------+------------+

| PSM-root-policy | 7 |

| Tenant Admin Policy | 1 |

+---------------------+------------+

As you can see, I am using the tenancy OCID to point to the root compartment in

the CLI command (-c $TENANCY_OCID). The OCID of the root compartment of your

tenancy is the same as the OCID of your tenancy.

The Tenant Admin Policy contains only one, but important, statement.

$ oci iam policy list -c $TENANCY_OCID --all --query "data[?name=='Tenant

Admin Policy'].statements[0]"

[

 "ALLOW GROUP Administrators to manage all-resources IN TENANCY"

]

Chapter 4 Cloud SeCurity and projeCt environmentS

209

The role of this policy is to let the members of the default group Administrators

manage all cloud resources in your tenancy. This policy is protected; you neither can

delete it nor can add any other statements.

The second default policy visible in your root compartment, namely, the PSM-root-

policy policy, allows various Oracle Cloud Platform services to be provisioned on Oracle

Cloud Infrastructure. I am not going to discuss them in this work.

Earlier in this chapter, we created a new user called sandbox-admin and added him

to the newly created sandbox-admins group. We also added a dedicated profile in the ~/.

oci/config file for this user. If we tried to execute any CLI command on behalf of this

user, the command would fail with the NotAuthorizedOrNotFound service error because

there are no policy statements that would allow the members of the sandbox- admins

group to interact with the API. We are ready to change it by adding a new policy to the

root compartment. The policy is going to ship with just a single statement that allows

the members of the sandbox-admins group to perform all kinds of operations on all

resources in the Sandbox compartment. This is how you do it using the CLI:

$ oci iam policy create -c $TENANCY_OCID --name sandbox-admins-

policy --description "Policy for the Sandbox compartment admins

group" --statements '["allow group sandbox-admins to manage all-resources

in compartment Sandbox"]'

The command has created a new policy cloud resource called sandbox-admins-

policy. Even though the policy was created in the root compartment, the scope of the

statement refers to the Sandbox compartment. The IAM policy contains one statement.

allow group sandbox-admins to manage all-resources in compartment Sandbox

This statement is pretty powerful because it allows the members of the sandbox-

admins group to perform all kinds of operations on the cloud resources in the Sandbox

compartment, including the creation of policies with statements that grant other groups

to take actions in the Sandbox compartment or its subcompartments.

Caution Before continuing, please make sure you’ve added two profiles
(SANDBOX-ADMIN and SANDBOX-USER) to the ~/.oci/config and ~/.oci/
oci_cli_rc files, as described at the end of the “Groups” section in this chapter!

Chapter 4 Cloud SeCurity and projeCt environmentS

210

Let’s try if the sandbox-admin user is able to access some APIs. Do not forget to apply

the correct --profile switch so that the request is signed as the sandbox-admin user.

$ oci lb shape list --profile SANDBOX-ADMIN --query 'data[*].name'

[

 "100Mbps",

 "400Mbps",

 "8000Mbps"

]

Everything looks fine. We were able to list the available load balancer shapes. If you

repeat the same command, but this time using the SANDBOX-USER profile, you will see an

error because the other group, sandbox-users, is not mentioned in any policy for the

Sandbox compartment.

$ oci lb shape list --profile SANDBOX-USER --query 'data[*].name'

ServiceError:

{

 "code": "NotAuthorizedOrNotFound",

 "message": "Authorization failed or requested resource not found.",

 "opc-request-id": "CF6...............7DC",

 "status": 404

}

To let the sandbox-user see the load balancer shapes, protocols, and load balancers

in the Sandbox compartment, we need to grant the inspect policy verb over the load-

balancers resource type to the proper group. As the sandbox-admin user, you will create

a new policy, this time in the Sandbox compartment. I will additionally show you how

to import the policy statements from a JSON file. This would let you manage the policy

statements in version-controlled files if you want. First, we need a file with the IAM

policy statement. You will find it at the chapter04/2-policies/sandbox-user-policy.

json path. Listing 4-5 shows the contents of this policy file.

Listing 4-5. Policy Statements in JSON File

[

"allow group sandbox-users to inspect load-balancers in compartment Sandbox"

]

Chapter 4 Cloud SeCurity and projeCt environmentS

211

We will reference the sandbox-user-policy.json file, as we execute the oci iam

policy create CLI command that adds a new policy in the Sandbox compartment with

the statements read from the JSON file. Do not forget to use the SANDBOX-ADMIN profile

when you execute the command.

$ cd ~/git/oci-book/chapter04/2-policies/

$ oci iam policy create --profile SANDBOX-ADMIN --name sandbox-users-policy

--description "Policy for regular Sandbox compartment users" --statements

"file://~/sandbox-user-policy.json"

To verify whether the new sandbox-users-policy policy has been successfully

created in the Sandbox compartment, you can run this command:

$ oci iam policy list --profile SANDBOX-ADMIN --all --query "data[*].{Name:

name,Statements:statements}"

[

 {

 "Name": "sandbox-users-policy",

 "Statements": [

 "allow group sandbox-users to inspect load-balancers in compartment

Sandbox"

]

 }

]

For the final test, please try repeating the previously unsuccessful API call, again as

the sandbox-user user, by applying the SANDBOX-USER profile in the CLI command.

$ oci lb shape list --profile SANDBOX-USER --query 'data[*].name'

[

 "100Mbps",

 "400Mbps",

 "8000Mbps"

]

If something went wrong, please make sure you’ve added the sandbox-user to the

sandbox-users group. As you can see, as soon as the relevant policy statement has been

added, the user is able to successfully reach the API.

Chapter 4 Cloud SeCurity and projeCt environmentS

212

In this section, we created two policies, as shown in Figure 4-20. The first one, called

sandbox-admins-policy, was added to the root compartment and granted unlimited

management-level access over all kinds of cloud resources in the scope of the Sandbox

compartment to the sandbox-admins group members. The second policy, named

sandbox- users-policy, was set up inside the Sandbox compartment and given limited

inspect-level access just over load-balancer-specific resource types that exist in the

scope of the Sandbox compartment to the sandbox-users group members.

Figure 4-20. Policies in different compartments

The more users and compartments your tenancy contains, the more you may end up

with the need for a pretty complex set of policies. This is why you should have in mind

a well- organized pattern for the placement of policies and their statements structure

from the beginning. Because of the implicit deny-all rule, I encourage you to gradually

increase the access level to various cloud resources, as soon as you spot that users really

need access to them. Throughout this book, we are going to follow this best practice in

the case of the sandbox-user user. In each later chapter, I am going to add the required

policy statements so that this user is able to perform the tasks included in a particular

chapter.

We’ve covered the compartments, users, groups, and policies management by using

the OCI Console and the CLI. You may wonder, especially after having read Chapter 3,

whether it is possible to include these cloud resources in your Terraform infrastructure

code. Well, technically, yes. Absolutely. For example, you would use the oci_identity_

policy resource to define an access policy. However, I personally prefer to manage IAM

cloud resources outside of my Terraform infrastructure code.

Chapter 4 Cloud SeCurity and projeCt environmentS

213

 Audit and Search
As a cloud tenancy owner or a person responsible for the cloud account you manage,

you need to keep an eye on all these different cloud resources that exist across different

compartments at any given moment. In addition, you should be aware of the actions

taken by the users. When I talk about an action over one particular or sometimes many

cloud resources at once, I basically think about an interaction with the API. I mentioned

this in the previous chapter, as I discussed the automation options. Any kind of activity,

no matter if it is done in the OCI Console, with the use of API, SDK, CLI, or Terraform,

results in an API call under the hood. In this section, I will introduce you briefly to the

searching and auditing capabilities in Oracle Cloud Infrastructure, which are truly

indispensable when you want to control things properly.

 Searching
Imagine you want to find all users and groups whose display name contains the term

sandbox. In the previous sections of the current chapter, I fetched the lists of all users

and groups with two separate CLI commands: iam user list and iam group list. The

JMESPath-powered filter I applied with the --query parameter parsed the data received

in the response and displayed the matching elements locally on my client machine.

What if my cloud tenancy had dozens of users? We would unnecessarily receive a really

large response with all the users and only then apply a local JMESPath- powered filter.

This does not seem like an effective solution. Furthermore, what if we wanted to search

for cloud resources of various types that match a given name just using a single API call?

Oracle Cloud Infrastructure offers a dedicated Search API to perform cross-resource-

type and cross-compartment full-text search or structured queries to simplify and

enhance the way you collect information about cloud resources. This is especially useful

when you need to find a broad range of resources that are scattered across different

compartments. This is conceptually illustrated in Figure 4-21.

Chapter 4 Cloud SeCurity and projeCt environmentS

214

As long as there are policy statements that give access to these compartments and

resource types to the group your user belongs to, you can easily search for the resources

using the Search API. There are two types of searches supported.

• Free-text queries

• Structured queries

You will usually employ the free-text queries to get a brief overview of resources

based on their metadata text-pattern match. The structured queries will be handier if

you have already certain resource types or conditions in mind.

 Free-Text Search

Free-text queries are nothing more than full-text searches performed over all cloud

resource metadata indexed by Oracle Cloud Infrastructure. If a given search term

is found in any of the indexed metadata fields, the cloud resource is included in the

results, as long as this type of resource and its compartment scope are visible for the

user who runs a free-text search. To run a free-text query in the OCI Console, place the

searched term, for example, sandbox, in the search box present in the top bar, as shown

in Figure 4-22. The results will be grouped into types and displayed altogether with the

searched term highlighted, as presented in Figure 4-23.

Figure 4-21. Oracle Cloud Infrastructure Search API

Chapter 4 Cloud SeCurity and projeCt environmentS

215

The same query can be run with the use of the CLI. To do so, we are going to leverage

the search resource free-text-search command and specify the term that we

are interested in finding using the --text parameter. Please note that we still can use

JMESPath (the --query parameter) to locally filter and display only the fields we are

really interested in.

$ oci search resource free-text-search --text sandbox --query 'data.

items[*].{Type:"resource-type",Name:"display-name",OCID:"identifier",State:

"lifecycle-state"}'

[

 {

 "Name": "sandbox-admin",

 "OCID": "ocid1.user.oc1..aa.........7d5dca",

Figure 4-22. Free-text search in the OCI Console

Figure 4-23. Free-text search results in the OCI Console

Chapter 4 Cloud SeCurity and projeCt environmentS

216

 "State": "ACTIVE",

 "Type": "User"

 },

 {

 "Name": "sandbox-user",

 "OCID": "ocid1.user.oc1..aa.........dzqpxa",

 "State": "ACTIVE",

 "Type": "User"

 },

 {

 "Name": "sandbox-admins",

 "OCID": "ocid1.group.oc1..aa.........hlotwa",

 "State": "ACTIVE",

 "Type": "Group"

 },

 {

 "Name": "sandbox-users",

 "OCID": "ocid1.group.oc1..aa.........rj2sba",

 "State": "ACTIVE",

 "Type": "Group"

 },

 {

 "Name": "Sandbox",

 "OCID": "ocid1.compartment.oc1..aa.........gzwhsa",

 "State": "ACTIVE",

 "Type": "Compartment"

 }

As I said earlier, you will usually employ this type of search just to get some initial,

high-level overview of these resources whose metadata match a particular text pattern.

Depending on the term you are searching for, the result set can be really large. All

in all, this is a full-text search over all kinds of cloud resources in your tenancy or

the compartments your user has access to. This is why you should not forget about

pagination, which you can control, in the case of CLI commands, with the --limit and

--page parameters. You can read more about that in a dedicated section, later in this

chapter.

Chapter 4 Cloud SeCurity and projeCt environmentS

217

 Structured Queries

Structured queries, on the other hand, use a special query language that gives you more

power and control over the types of resources and the compartment scope you would

like to include in your search. For example, this is a query that will list all “running” or

“terminating” compute instances in the Sandbox compartment:

query

 instance resources

 where (lifeCycleState = 'RUNNING' || lifeCycleState = 'TERMINATING') &&

compartmentId = 'ocid1.compartment.oc1..aa.........gzwhsa'

To run it in the OCI Console, open a free-text search page and click the Advanced

Search button, or you can append /search to your URL to access this page directly. For

example, if you are using the Frankfurt region, go to this URL: https://console.eu-

frankfurt-1.oraclecloud.com/search. You will see the text box where you can put

your query, as shown in Figure 4-24.

Figure 4-24. Structured query in the OCI Console

Chapter 4 Cloud SeCurity and projeCt environmentS

https://console.eu-frankfurt-1.oraclecloud.com/search
https://console.eu-frankfurt-1.oraclecloud.com/search

218

The same query can be run with the CLI using the search resource structured-

search command. The query will then be passed as the --query-text parameter.

$ oci search resource structured-search --query-text "query instance resources

where (lifeCycleState = 'RUNNING' || lifeCycleState = 'TERMINATING')

&& compartmentId = 'ocid1.compartment.oc1..aa.........gzwhsa'"

{

 "data": {

 "items": [

 {

 "availability-domain": "feDV:EU-FRANKFURT-1-AD-2",

 "compartment-id": "ocid1.compartment.oc1..aa.........gzwhsa",

 "defined-tags": {},

 "display-name": "vistula-2",

 "freeform-tags": {},

 "identifier": "ocid1.instance.oc1.eu-frankfurt-1.ab.........ukh6ba",

 "lifecycle-state": "Running",

 "resource-type": "Instance",

 "search-context": null,

 "time-created": "2019-02-23T14:56:16.521000+00:00"

 },

 {

 "availability-domain": "feDV:EU-FRANKFURT-1-AD-1",

 "compartment-id": "ocid1.compartment.oc1..aa.........gzwhsa",

 "defined-tags": {},

 "display-name": "vistula-1",

 "freeform-tags": {},

 "identifier": "ocid1.instance.oc1.eu-frankfurt-1.ab.........fnqroq",

 "lifecycle-state": "Running",

 "resource-type": "Instance",

 "search-context": null,

 "time-created": "2019-02-23T14:40:08.609000+00:00"

 }

]

 }

}

Chapter 4 Cloud SeCurity and projeCt environmentS

219

Note do not worry that there are no results in your case. this is because there
are no running instances in the Sandbox compartment at the moment. Feel free to
test this feature while working with various cloud resources in the exercises from
the upcoming chapters.

Coming back to the initial task, namely, listing users and groups whose metadata

such as display name or description contain the term sandbox, the following is the

proper query:

query user, group resources matching 'sandbox-'

As you can see, instead of applying the where clause, we are incorporating the

matching clause. This is an example of how you achieve a free-text query over a selected

subset of resource types. If you’ve used the free-text search, you would see other types of

resources as well.

Similarly to the free-text search, you can apply an additional JMESPath-powered

filter to the result set also in case of the structured queries. Just do not confuse the

--query-text parameter and the --query parameter. The first uses the Search API to

find and return in a response only matching resources. The latter, namely, the --query

parameter, applies the JMESPath formula to filter the results locally on your client

machine.

$ oci search resource structured-search --query-text "query user, group

resources matching 'sandbox-'" --query 'data.items[*].{Type:"resource-

type",Name:"display-name",OCID:"identifier"}'

[

 {

 "Name": "sandbox-admin",

 "OCID": "ocid1.user.oc1..aa.........7d5dca",

 "Type": "User"

 },

 {

 "Name": "sandbox-user",

 "OCID": "ocid1.user.oc1..aa.........dzqpxa",

 "Type": "User"

 },

Chapter 4 Cloud SeCurity and projeCt environmentS

220

 {

 "Name": "sandbox-admins",

 "OCID": "ocid1.group.oc1..aa.........hlotwa",

 "Type": "Group"

 },

 {

 "Name": "sandbox-users",

 "OCID": "ocid1.group.oc1..aa.........rj2sba",

 "Type": "Group"

 }

]

To read more about the syntax of the query language for structured searches, please

consult the official documentation. You will find it at https://docs.cloud.oracle.com/

iaas/Content/Search/Concepts/queryoverview.htm.

Targeted searches done with the use of structured queries usually bring smaller

result sets when compared to the free-text search. However, you may still benefit from

employing proper pagination. Let’s see how to do it.

 Pagination

Result sets can be really large nowadays. You can find dozens, hundreds, thousands,

or even more items that match your query. Sometimes, it makes sense to verify just

a few initial results; in other cases, you need to carefully analyze the entire result set

item by item. For example, to calculate the total number of CPUs of your running

compute instances at a given time, you would need to process the entire result set of

your query. Fetching all the results at once may seem costly and, in some cases, can

crash the application because of memory reasons. This is why you should always think

about pagination. Pagination assumes you fetch the result set in pages by making

a sequence of related search calls. The items are sorted; therefore, if you continue

collecting results page by page, you will eventually reach the end of the result set.

In this way, you will know you’ve managed to process the entire result set. The OCI

Console provides pagination out of the box. When using the CLI, you will need to

define the --limit and --page parameters and base the contents of the opc-next-

header field on each consequent request. It does not matter if you are using the

Chapter 4 Cloud SeCurity and projeCt environmentS

https://docs.cloud.oracle.com/iaas/Content/Search/Concepts/queryoverview.htm
https://docs.cloud.oracle.com/iaas/Content/Search/Concepts/queryoverview.htm

221

search resource structured-search command or the search resource free-

text-search command. In both cases, the mechanism works in the same way.

Let’s see how it works with an example. We are going to run the same free-text query

for the sandbox term. This time, we will apply pagination and list up to three items at

once. Hence, as you can guess, the --limit parameter in the CLI command will take 3

as the value. If you look closer at the JMESPath filter, you will see I am additionally

displaying the opc-next-page element under the nextpage name.

$ oci search resource free-text-search --text sandbox --query "{results:

data.items[*].{type: \"resource-type\", name: \"display-name\"}, nextpage:

\"opc-next-page\"}" --limit 3

{

 "nextpage": "eyJ.........cOY",

 "results": [

 {

 "name": "sandbox-admin",

 "type": "User"

 },

 {

 "name": "sandbox-user",

 "type": "User"

 },

 {

 "name": "sandbox-admins",

 "type": "Group"

 }

]

}

$ NEXTPAGE=eyJ.........cOY

Perfect. We’ve received the first three items from the result set. Now, in the next

query, you will add the --page parameter to the CLI command and use the value

received in the nextpage field of the previous query result.

$ oci search resource free-text-search --text sandbox --query "{results:

data.items[*].{type: \"resource-type\", name: \"display-name\"}, nextpage:

\"opc-next-page\"}" --limit 3 --page "$NEXTPAGE"

Chapter 4 Cloud SeCurity and projeCt environmentS

222

{

 "nextpage": null,

 "results": [

 {

 "name": "sandbox-users",

 "type": "Group"

 },

 {

 "name": "Sandbox",

 "type": "Compartment"

 }

]

}

Excellent. The next three items from the result set are delivered. This time, the

nextpage field is set to null, which indicates that we’ve reached the end of the result set.

 Auditing
Oracle Cloud Infrastructure collects information about every call to the API. As a result,

any kind of interaction with the API, regardless of its origin, whether the OCI Console,

SDK, CLI, or Terraform, is a subject of auditing. The audit logs are stored for 90 days,

unless you change this value. You can retain the audit log entries for as long as 365 days.

To search for the occurrence of a particular event that took place in a chosen timeframe

in the OCI Console, take these steps:

 1. Go to Menu ➤ Governance ➤ Audit.

 2. Choose the compartment to which you would like to narrow the

results.

 3. Choose the start date and the end date for your timeframe.

 4. Provide a search keyword such as LaunchInstance.

 5. Click Search.

 6. Click the Keep Searching label to make sure all audit log entries

are processed.

Figure 4-25 shows the results of an audit event search.

Chapter 4 Cloud SeCurity and projeCt environmentS

223

The first two entries show the events captured during the vistula-1 and vistula-2

compute instance provisioning. These two instances have been provisioned by the

tenancy owner admin user, who happens to be a federated user. In the case of federated

users, to find out who took the action, you would need to expand the event details

and look at the principalId field. The third compute instance called vistula-3 was

launched by the sandbox-admin user, which is a local, nonfederated user; therefore, you

can see its name in the User column.

Note launching the vistula-* instances has not been described in this
chapter, but feel free to search for the uuid-* instances you provisioned as part of
the exercises from the chapter to experiment with the audit event search feature.

There are more details recorded for each audit log event than what you can see in

the table shown in Figure 4-25. If you expand one of these entries, say the third one,

you would see more information, as shown in Figure 4-26, including the OCID of the

compute instance that was the subject of the LaunchInstance event.

Figure 4-25. Audit Events search in the OCI Console

Chapter 4 Cloud SeCurity and projeCt environmentS

224

Figure 4-26. Audit event details in the OCI Console

As always, the same operation is also available in the form of a CLI command, this

time called audit event list.

 Summary
After having read this chapter, you should have a pretty clear understanding of how to

prepare the logical containers called compartments for the cloud resources that belong

to different projects environments and production systems. You know how to manage

users and groups both in the Console and with the use of the CLI. You are aware of the

importance of the policy statements and have knowledge of how to create and manage

them using IAM policies. You are able to perform free-text searches and find resources

using structured queries. Finally, you understand the concept of auditing and its

importance in cloud tenancy custodianship.

Chapter 4 Cloud SeCurity and projeCt environmentS

225
© Michał Tomasz Jakóbczyk 2020
M. T. Jakóbczyk, Practical Oracle Cloud Infrastructure, https://doi.org/10.1007/978-1-4842-5506-3_5

CHAPTER 5

Data Storage in the
Oracle Cloud
There are many ways to store data in Oracle Cloud. A lot will depend on the type of data,

application context, and data usage patterns that apply to a particular use case or user

story. This chapter will focus solely on one of the most popular approaches to store data

in the cloud, namely, object storage.

 Buckets and Objects
Imagine you are working for a real estate developer. You are dealing with various types

of data items such as real estate marketing materials, apartment blueprints, parking lot

plans, construction schedules, and so on. Even though each of these items is typically

a file, you may generalize a bit and consider them objects. In other words, you can see

these items as the content that your cloud-based application would process and serve.

To ease the data asset management, it would be helpful to be able to group these objects.

In this example, the grouping could be based on different real-estate projects, which own

particular objects. Now, what if you were able to safely forget about nonbusiness tasks

such as making sure the data is always available and securely replicated to survive any

unexpected events? This would simply let you focus solely on the business nature of the

individual data items as required by your business processes. This is where object storage

comes into play. It takes the burden of various, purely technical activities that occur in

the data lifecycle. The data items are automatically replicated. Furthermore, you do not

need to worry about whether there is still enough space on a disk volume because you

never consider individual disk volumes in this case. By contrast, from a user perspective,

you work with a flat, nearly endless storage space. Last but not least, data is by default

encrypted at rest using the 256-bit Advanced Encryption Standard (AES-256).

226

I’ve mentioned that you can group related objects such as, in the case of the earlier

example, apartment blueprints and parking lot plans that belong to the same real estate

project. To do so, you need some kind of logical container. Object storage lets you store

the associated objects in logical containers called buckets. In the previous chapter, we

talked about compartments and their role in isolating cloud resources based on the

projects and systems maintained under your cloud account. The same rule applies here

as well. Each bucket has to exist in exactly one compartment. This forces you to place the

new bucket in the context of some particular project environment, production system,

or general-purpose compartment such as Sandbox. Compartments and buckets may still

be insufficient in more sophisticated ways to organize the objects as you would want.

Often, we would prefer to deal with a hierarchical structure with a number of hierarchy

levels to express a more detailed grouping. This can be achieved by prefixing object

names in a proper way to simulate a folder-like multilevel hierarchy inside a bucket.

You can prefix object names with /-separated “paths” and end up with complete object

names such as /waw/bemowo/125.pdf or /waw/bemowo/245.pdf. This naming convention

allows you to list the objects based on a particular prefix and perform various bulk

operations on prefix-based subsets of objects in a bucket when using the CLI. Figure 5-1

illustrates the core components of object storage and their relation to compartments.

Figure 5-1. Buckets and object hierarchies

Chapter 5 Data Storage in the oraCle ClouD

227

Each cloud tenancy comes with an own namespace in which the buckets exist. The

namespace name is generated only once, at the very beginning, and cannot be changed.

Object storage requires bucket names to be unique only within a single cloud account.

There are no conflicts possible with the existing bucket names taken by other tenants. As

a result, it becomes obvious that all direct and indirect (CLI, SDK, Terraform) API calls to

the object storage endpoint have to be aware of the namespace.

Note the code snippets from this book have been tested on macoS and
Windows Subsystem for linux. Moreover, all commands should work on the major
linux distributions. if you are using Windows and do not want to use Windows
Subsystem for linux, you can always run linux on a VM. Furthermore, the majority
of code snippets may also work in git Bash on Windows. remember to set up the
Cli and terraform exactly as described in Chapters 3 and 4.

You can find the name of the object storage namespace associated with your cloud

tenancy in the Console like this:

 1. Go to Menu ➤ Administration ➤ Tenancy Details.

 2. Find the Object Storage Namespace label.

Alternatively, you can use the CLI to get the name of the object storage (os)

namespace (ns) like this:

$ oci os ns get

{

 "data": "jakobczyk"

}

The object storage namespace name is immutable and does not change. The name

of the object storage namespace is a random and unique string. Older tenancies, such as

mine, may have their namespace name the same as tenancy name. You may recall that,

in Chapter 2, I wrote that every Oracle Cloud Infrastructure cloud resource is uniquely

identified with a structured identifier called an OCID. Well, there are exceptions to that

rule: buckets and objects are uniquely identified by names. They are always named in

the context of the namespace dedicated to your cloud tenancy, as shown in Figure 5-2.

Chapter 5 Data Storage in the oraCle ClouD

228

At this stage, I need to note that object storage in Oracle Cloud Infrastructure is

regional in scope. This basically means that a particular bucket, together with the objects

it stores, resides in the region in which the bucket was initially created. If you find

yourself needing to perform cross-regional object transfers to another bucket located in

a different region, there is an API that supports this kind of operation.

 Working with Objects
Buckets in which objects reside are either public or private. To protect the data most

of the time, you will be using private buckets, but you are free to create public buckets

whenever you want. There are two types of authenticated groups that can access objects

in private buckets.

• IAM users

• Instance principals

I will explain each of these two types of access in the upcoming sections. In addition,

you are able to let unauthenticated clients access particular objects in private buckets by

issuing pre-authenticated requests that are valid for a given period of time. Anyone who

knows the link is able to access the particular object. Pre- authenticated requests will be

covered at the end of this chapter.

To prepare for the exercises, we need a quick recap. In the previous chapter, I asked

you to create two users, sandbox-admin and sandbox-user, and two corresponding

groups, sandbox-admins and sandbox-users. Then, in the root compartment, we created

a new IAM policy (sandbox-admins-policy) with a single IAM policy statement that

granted the full administration access over the Sandbox compartment to the members of

sandbox-admins group.

allow group sandbox-admins to manage all-resources in compartment Sandbox

Figure 5-2. Namespace, bucket, and object

Chapter 5 Data Storage in the oraCle ClouD

229

Please make sure this setup is still in place before proceeding. You will need it

in order to complete the walk-throughs in this chapter. To demonstrate some basic

features of object storage, you are going to create a bucket and upload a set of files using

CLI as the sandbox-user user. Next, we will use other commands for bulk operations,

prefix-based lists with paging, and custom metadata. You will also learn how to handle

concurrent updates. All CLI commands use Oracle Cloud Infrastructure REST APIs that

are conceptually illustrated in Figure 5-3.

Figure 5-3. Interacting with the object storage API

Let’s look at the basic interactions with object storage. We will perform them using

the CLI. Again, the CLI commands you are about to issue will simply result in API

requests, as described in Chapter 3.

 Basics
Objects can be thought of as data entities. This implies that there is a standard set of

operations that can be performed on them such as create, read, update, and delete,

commonly known as CRUD. No surprise here. Similar operations can be performed on

buckets. We are now going to use the oci os bucket create CLI command to create

a new bucket called blueprints in the Sandbox compartment. To stick to the best

practices, we will perform this and a few consecutive operations as the sandbox-admin

user. To do so, remember to apply the proper CLI profile.

Chapter 5 Data Storage in the oraCle ClouD

230

$ oci os bucket create --name blueprints --profile SANDBOX-ADMIN

{

 "data": {

 "approximate-count": null,

 "approximate-size": null,

 "compartment-id": "ocid1.compartment.oc1..aa.........gzwhsa",

 "created-by": "ocid1.user.oc1..aa.........7d5dca",

 "defined-tags": {},

 "etag": "7115bc55-b18c-4232-80f7-363643c327b9",

 "freeform-tags": {},

 "kms-key-id": null,

 "metadata": {},

 "name": "blueprints",

 "namespace": "jakobczyk",

 "object-lifecycle-policy-etag": null,

 "public-access-type": "NoPublicAccess",

 "storage-tier": "Standard",

 "time-created": "2019-03-07T15:25:52.065000+00:00"

 },

 "etag": "7115bc55-b18c-4232-80f7-363643c327b9"

}

There are a couple of interesting elements in the response that are worth explaining.

The only parameter we provided the CLI command with was the bucket name. This is

why the bucket took the default configuration values whenever needed. As a result, the

newly created bucket has been provisioned as a standard storage tier bucket with no

public access allowed.

There are two storage tiers: standard and archive. They do not differ much. The

archive storage tier is basically cheaper at the cost of no immediate access to the objects

that have to be restored first. This is an operation that can take a few hours. What would

you use the archive storage for? Think about rarely accessed data that has to be stored

for a given period of time because of some regulatory or compliance reasons. Another

example could be old logs or measurements you do not necessarily need at the moment

but would prefer to keep somewhere just in case. In this chapter, we are going to deal

with standard storage tier buckets.

Chapter 5 Data Storage in the oraCle ClouD

231

No public access allowed means the bucket is private and the objects can be

accessed only by authenticated IAM users, by instance principals, or through pre-

authenticated requests. If we had been dealing with a public bucket, the objects would

have been visible and downloadable for everyone. Figure 5-4 shows the bucket details in

the OCI Console.

Figure 5-4. Viewing bucket details in the OCI Console

This is the CLI command that lists the buckets present in an active compartment and

displays them in a form of a table:

$ oci os bucket list --query 'data[*].{Bucket:name}' --output table

--profile SANDBOX-ADMIN

+------------+

| Bucket |

+------------+

| blueprints |

+------------+

Moving to the next step, we want to create permissions that allow the members of

the sandbox-users group to list the objects that exist in this bucket as well as be able

to add new and delete existing objects. To do so, prepare a file with the relevant policy

statements first, as shown in Listing 5-1. I’ve called this file sandbox-users.policies.

storage.json, but the name doesn’t matter as long as you reference it properly in the

Chapter 5 Data Storage in the oraCle ClouD

232

next command. Alternatively, you can find this file in the Git repository at the following

path: chapter05/1-policies/sandbox-users.policies.storage.json.

Listing 5-1. sandbox-users.policies.storage.json

[

"allow group sandbox-users to read buckets in compartment Sandbox where

target.bucket.name='blueprints'",

"allow group sandbox-users to manage objects in compartment Sandbox where

target.bucket.name='blueprints'"

]

The read policy verb for buckets allows the users to list the buckets and

get the detailed configuration of each bucket. Yet, we are using a condition with the

 target.bucket.name variable that basically limits the permission and allows the users to

work only with the bucket named blueprints. Similarly, we are using the manage policy

verb for objects to grant all kinds of operations in the scope of objects, but only those

that are present in the blueprints bucket.

As soon as the file is ready, we can create a new policy in the Sandbox compartment

using the oci iam policy create CLI command in the same way we added new

policies in the previous chapter. Working as the sandbox-admin, you are only able

to create policies in the Sandbox compartment. In Chapter 4, we set the Sandbox

compartment as the default compartment for the SANDBOX-ADMIN profile in the ~/.oci/

oci_cli_rc file. In this way, you can skip the required --compartment-id (or its -c alias)

parameter because the CLI will be able to read and apply the default value. The following

CLI command will create a new IAM policy based on the file supplied. I am assuming

you have cloned the code related to the book; therefore, you can enter the directory that

contains the policy file and execute the CLI command like this:

$ cd ~/git/oci-book/chapter05/1-policies

$ oci iam policy create --name sandbox-users-storage-policy --statements

file://sandbox-users.policies.storage.json --description "Storage-related

policy for regular Sandbox users" --profile SANDBOX-ADMIN

Chapter 5 Data Storage in the oraCle ClouD

233

What about executing one of the most basic commands to put a file into the bucket?

In the first place, we need a sample file. Real data is precious and should be protected

nowadays, so let’s generate a random, meaningless file that we will pretend is a real estate

apartment blueprint PDF. This is how you generate a random binary file using Bash:

$ mkdir ~/data

$ cd ~/data

$ SIZE=$((4096+(10+RANDOM % 20)*1024))

$ head -c $SIZE /dev/urandom > 101.pdf

$ ls -lh 101.pdf | awk '{ print $9 " (" $5 ")" }'

101.pdf (21K)

Perfect. Now, be careful. From now on, the consecutive CLI commands will be

invoked using another profile, the SANDBOX-USER profile. This is how you can use the CLI

to put this file into the blueprints bucket:

$ oci os object put -bn blueprints --file 101.pdf --profile SANDBOX-USER

Uploading object [####################################] 100%

{

 "etag": "06b2293c-72d9-4668-b236-bdb881472bd6",

 "last-modified": "Thu, 07 Mar 2019 18:42:25 GMT",

 "opc-content-md5": "urJobycygNAm2Z3fEf3tkw=="

}

It was pretty easy, wasn’t it? We have used the oci os object put command

to upload the 101.pdf file to the blueprints bucket. The CLI profile SANDBOX-USER

authenticates as the sandbox-user user. This user belongs to the sandbox-users group. A

few moments ago, we granted this group of users the manage-level access over objects in

the blueprints bucket in the Sandbox compartment. As a careful reader, you may wonder

Figure 5-5. New policy for sandbox-users related to object storage

At this stage, you should see the new policy with two statements in the OCI Console,

as shown in Figure 5-5.

Chapter 5 Data Storage in the oraCle ClouD

234

how the CLI knows the name of the target object storage namespace. The name is stored

neither in the CLI config file nor in the oci_cli_rc file. The answer is it does not. As a

result, the CLI must query the API for the default object storage namespace associated with

the tenancy, in the background, using the same API as the one we queried with the oci os

ns get command. If you want to avoid this additional internal call to the API, you can pass

the namespace name to object storage CLI commands using the -ns option like this:

$ oci os object put -ns jakobczyk -bn blueprints --file 101.pdf --profile

SANDBOX-USER

To download the object to your local drive and save it under a different name, for

example, 101-copy.pdf, execute this CLI command:

$ oci os object get -bn blueprints --name 101.pdf --file 101-copy.pdf

--profile SANDBOX-USER

Downloading object [####################################] 100%

Finally, to delete the file from the bucket, use this CLI command:

$ oci os object delete -bn blueprints --name 101.pdf --profile SANDBOX-USER

Are you sure you want to delete this resource? [y/N]: y

What about updating an object? You have to be aware that the objects are

immutable. To update an object, you basically need to overwrite it, effectively replacing

the old version with the new one.

Alright. These were the basics.

 Object Name Prefixes
What if we are going to store the blueprints from different real estate projects in one

bucket? A property in the Bemowo district in Warsaw can have an apartment on sale

with the same number as another apartment in a different property in the Wola district.

We could use name prefixes to avoid mixing up these two apartments. This time, we are

going to generate an entire set of files that we will pretend are apartment blueprints.

We are going to use three groups of files. The first group will consist of blueprints of

apartments in a property in the Bemowo district in Warsaw.

$ mkdir -p warsaw/bemowo

$ for i in 101 102 105 107 115; do SIZE=$((4096+(10+RANDOM % 20)*1024));

head -c $SIZE /dev/urandom > warsaw/bemowo/$i.pdf; done

Chapter 5 Data Storage in the oraCle ClouD

235

The second group will imitate the blueprint files of apartments in building A that

belong to a property in the Wola district in Warsaw.

$ mkdir -p warsaw/wola/a

$ for i in 115 120 124 130; do SIZE=$((4096+(10+RANDOM % 20)*1024)); head

-c $SIZE /dev/urandom > warsaw/wola/a/$i.pdf; done

The third group will pretend to be the blueprint files of flats in building B in the same

property in the Wola district in Warsaw.

$ mkdir -p warsaw/wola/b

$ for i in 119 120 121; do SIZE=$((4096+(10+RANDOM % 20)*1024)); head -c

$SIZE /dev/urandom > warsaw/wola/b/$i.pdf; done

Good. You should end up with something like this:

$ find warsaw -type f -exec ls -lh {} + | awk '{ print $9 " (" $5 ")"}'

warsaw/bemowo/101.pdf (29K)

warsaw/bemowo/102.pdf (30K)

warsaw/bemowo/105.pdf (18K)

warsaw/bemowo/107.pdf (23K)

warsaw/bemowo/115.pdf (33K)

warsaw/wola/a/115.pdf (32K)

warsaw/wola/a/120.pdf (21K)

warsaw/wola/a/124.pdf (15K)

warsaw/wola/a/130.pdf (31K)

warsaw/wola/b/119.pdf (21K)

warsaw/wola/b/120.pdf (29K)

warsaw/wola/b/121.pdf (18K)

The CLI comes with a convenient trio of bulk commands that let you upload,

download, and delete objects in groups. We are now going to upload the blueprints from

the warsaw/bemowo local directory to the blueprints bucket as new objects prefixed with

the waw/bemowo/ string like this:

$ oci os object bulk-upload -bn blueprints --src-dir warsaw/bemowo/

--object-prefix "waw/bemowo/" --include "*.pdf" --profile SANDBOX-USER

{

 "skipped-objects": [],

Chapter 5 Data Storage in the oraCle ClouD

236

 "upload-failures": {},

 "uploaded-objects": {

 "waw/bemowo/101.pdf": {...}

 "waw/bemowo/102.pdf": {...},

 "waw/bemowo/105.pdf": {...},

 "waw/bemowo/107.pdf": {...},

 "waw/bemowo/115.pdf": {...}

 }

}

If you want, you can use the --include option to limit the uploaded files from the

source directory to the ones that match a given pattern.

In a similar way, we will upload the files from the warsaw/wola directory, this time

prefixing the objects with the waw/wola/a and waw/wola/b strings depending on the local

subdirectory in which each file was originally located.

$ oci os object bulk-upload -bn blueprints --src-dir warsaw/wola/a

--object-prefix "waw/wola/a/" --profile SANDBOX-USER

{

 "skipped-objects": [],

 "upload-failures": {},

 "uploaded-objects": {

 "waw/wola/a/115.pdf": {...},

 "waw/wola/a/120.pdf": {...},

 "waw/wola/a/124.pdf": {...},

 "waw/wola/a/130.pdf": {...}

 }

}

$ oci os object bulk-upload -bn blueprints --src-dir warsaw/wola/b

--object-prefix "waw/wola/b/" --profile SANDBOX-USER

{

 "skipped-objects": [],

 "upload-failures": {},

 "uploaded-objects": {

 "waw/wola/b/119.pdf": {...},

Chapter 5 Data Storage in the oraCle ClouD

237

 "waw/wola/b/120.pdf": {...},

 "waw/wola/b/121.pdf": {...}

 }

}

Figure 5-6 illustrates the operations we’ve just performed. Prefixes are indeed

helpful because they let you re-create a folder-like hierarchy in a particular bucket.

The ListObject Object Storage Service API offers a convenient query parameter called

prefix that lets you specify a subset of objects to be listed based on the object name

prefix. You can access this API using the oci os object list CLI command like this:

$ oci os object list -bn blueprints --prefix "waw/wo" --query 'data[*].

name' --profile SANDBOX-USER

[

 "waw/wola/a/115.pdf",

 "waw/wola/a/120.pdf",

 "waw/wola/a/124.pdf",

 "waw/wola/a/130.pdf",

 "waw/wola/b/119.pdf",

 "waw/wola/b/120.pdf",

 "waw/wola/b/121.pdf"

]

$ oci os object list -bn blueprints --prefix "waw/wola/b" --query 'data[*].

name' --profile SANDBOX-USER

[

 "waw/wola/b/119.pdf",

 "waw/wola/b/120.pdf",

 "waw/wola/b/121.pdf"

]

$ oci os object list -bn blueprints --prefix "waw/wola/b/12" --query

'data[*].name' --profile SANDBOX-USER

[

 "waw/wola/b/120.pdf",

 "waw/wola/b/121.pdf"

]

Chapter 5 Data Storage in the oraCle ClouD

238

 Listing Objects in Pages
In your daily work, you may easily encounter buckets that contain hundreds or

thousands of objects. Listing all of them at once is impossible. You need to revert to the

paging mechanism. You may remember the Search API and its paging mechanism that I

described in the previous chapter. The bad news is that, at the time of writing, the Search

API does not support object storage objects. The good news is that the Object Storage

ListObjects API features its own paging mechanism, which is actually slightly simpler

than the one used in the Search API. If you decide to use the limit parameter, in the

response besides the list of objects you will receive the next-start-with element that

is nothing more than the name of the next object. In every subsequent query, you can

take the value of the previous next-start-with element and use the start parameter to

instruct the API where to start listing the elements, as shown in this code snippet:

$ oci os object list -bn blueprints --limit 5 --query '{names:data[*].

name, next:"next-start-with"}' --profile SANDBOX-USER

{

 "names": [

 "waw/bemowo/101.pdf",

 "waw/bemowo/102.pdf",

 "waw/bemowo/105.pdf",

 "waw/bemowo/107.pdf",

 "waw/bemowo/115.pdf"

],

Figure 5-6. Prefix-based filtering

Chapter 5 Data Storage in the oraCle ClouD

239

 "next": "waw/wola/a/115.pdf"

}

$ oci os object list -bn blueprints --limit 5 --start "waw/wola/a/115.pdf"

--query '{names:data[*].name, next:"next-start-with"}' --profile SANDBOX- USER

{

 "names": [

 "waw/wola/a/115.pdf",

 "waw/wola/a/120.pdf",

 "waw/wola/a/124.pdf",

 "waw/wola/a/130.pdf",

 "waw/wola/b/119.pdf"

],

 "next": "waw/wola/b/120.pdf"

}

$ oci os object list -bn blueprints --limit 5 --start "waw/wola/b/120.pdf"

--query '{names:data[*].name, next:"next-start-with"}' --profile SANDBOX- USER

{

 "names": [

 "waw/wola/b/120.pdf",

 "waw/wola/b/121.pdf"

],

 "next": null

}

 Object Metadata
Another useful aspect related to storing files of different kinds and business purposes

in object storage buckets is the possibility to attach custom metadata. In this way, you

can provide additional contextual information by annotating selected objects without

changing their content. Back to our example scenario with the real estate projects, we

could decide to annotate the blueprints that refer to two-level apartments. Because

we do not want to change the object content, we can leverage custom metadata that

basically consists of key-value pairs that you associate with an existing object. This is how

you put a new object with some custom metadata (apartment-levels key) into a bucket:

Chapter 5 Data Storage in the oraCle ClouD

240

$ head -c 4096 /dev/urandom > warsaw/wola/a/122.pdf

$ METADATA='{ "apartment-levels": "2" }'

$ oci os object put -bn blueprints --name "waw/wola/a/122.pdf" --file

warsaw/wola/a/122.pdf --metadata "$METADATA" --profile SANDBOX-USER

Uploading object [####################################] 100%

{

 "etag": "b899ed57-baca-4aff-85ba-5e1fe925c437",

 "last-modified": "Sat, 09 Mar 2019 10:46:34 GMT",

 "opc-content-md5": "kZ6fEuo46zGMm+Tymcumaw=="

}

At first glance, nothing particular seems to have happened. Yet, if you view object

details in the OCI Console, you will see a new custom key-value pair, as shown in

Figure 5-7.

Figure 5-7. Custom metadata of an object

If you consider programmable interactions with the API, there is no need to

download a particular file to inspect its custom metadata. The HeadObject API lets you

read only the object’s metadata and the entity tag. We will talk about the importance of

entity tags in the next section. This is how you access this API using the oci os object

head CLI command:

Chapter 5 Data Storage in the oraCle ClouD

241

$ oci os object head -bn blueprints --name "waw/wola/a/122.pdf" --profile

SANDBOX-USER

{

 "content-length": "4096",

 "content-md5": "kZ6fEuo46zGMm+Tymcumaw==",

 "content-type": "application/octet-stream",

 "date": "Sat, 09 Mar 2019 11:40:41 GMT",

 "etag": "b899ed57-baca-4aff-85ba-5e1fe925c437",

 "last-modified": "Sat, 09 Mar 2019 10:46:34 GMT",

 "opc-meta-apartment-levels": "2",

}

In both cases, you can see that any custom key will be prefixed with the opc-meta-

prefix to avoid conflicts with any standard metadata such as content-length or content-

type. You need to be aware that the objects are immutable; therefore, to attach new

metadata to an object already present in a bucket, we have to replace the object. It does

not matter if the new version contains the same content.

 Concurrent Updates
Let’s discuss something called race conditions. Suppose there are two applications that

want to update the same object, at the same time, incrementally adding their partial

changes. If they fetch the object straight one after another, they will be processing the

same base version, each unaware of the fact that there is another application working

on the same object in parallel. Everything seems fine until the moment in which both

applications decide to upload a new version of the object, effectively replacing the

base version. The result is easy to predict. The application that performs an update

second will wipe out the changes done by the application that saved the object first.

This situation can be called a lost update and is conceptually presented in Figure 5- 8.

Chapter 5 Data Storage in the oraCle ClouD

242

The impact of a lost update depends on the business scenario. Think of application

logic that changes underground parking lot maps by coloring the parking spaces that

have been sold. In this case, a lost update would result in showing some parking spaces

as available even though they have been sold. Usually, we would prefer to completely

eliminate that kind of issue. The object storage API addresses this problem with entity

tags (ETags) that can be used to implement optimistic concurrency control. An ETag is

an identifier generated for each version of the object, no matter whether the content has

changed or remained the same. If you put the same object twice, effectively overwriting

it with the same content during the second upload, you will still end up having two

different ETags generated, as shown in this code snippet:

$ head -c 8096 /dev/urandom > warsaw/bemowo/parking.pdf

$ oci os object put -bn blueprints --name waw/bemowo/parking.pdf --file

warsaw/bemowo/parking.pdf --profile SANDBOX-USER

Uploading object [####################################] 100%

{

 "etag": "d5ded03a-64ca-4af2-8185-563f658f4021",

 "last-modified": "Sat, 09 Mar 2019 16:43:31 GMT",

 "opc-content-md5": "upvy5Ns5flwg053S8WJG1w=="

}

Figure 5-8. Lost update problem

Chapter 5 Data Storage in the oraCle ClouD

243

$ oci os object put -bn blueprints --name waw/bemowo/parking.pdf --file

warsaw/bemowo/parking.pdf --profile SANDBOX-USER

WARNING: This object already exists. Are you sure you want to overwrite it?

[y/N]: y

Uploading object [####################################] 100%

{

 "etag": "4f893925-455a-4ea5-8890-2b39f8523d82",

 "last-modified": "Sat, 09 Mar 2019 16:43:41 GMT",

 "opc-content-md5": "upvy5Ns5flwg053S8WJG1w=="

}

How would you include the optimistic concurrency control in your application

logic to avoid race conditions? An update operation on an object can be performed

in steps. First, the current object’s ETag is read, and the object content gets

downloaded. Next, the application changes the object locally. Finally, the API is told

to put a new version of the object into the bucket, effectively overwriting the old

version, but only if the ETag hasn’t changed in the meantime. Such a conditional

PUT can be achieved using the If-Match HTTP header, as shown in Figure 5-9.

Chapter 5 Data Storage in the oraCle ClouD

244

Let me demonstrate this scenario using the CLI:

$ ETAG=`oci os object head -bn blueprints --name waw/bemowo/parking.pdf

--query 'etag' --profile SANDBOX-USER --raw-output`

$ echo $ETAG

6836145f-2b37-4538-885d-bd7f242d5a34

$ oci os object get -bn blueprints --name waw/bemowo/parking.pdf --file

local.parking.pdf --profile SANDBOX-USER

Downloading object [####################################] 100%

$ ls -lh local.parking.pdf | awk '{ print $9 " (" $5 ")" }'

local.parking.pdf (7.9K)

$ head -c 2048 /dev/urandom >> local.parking.pdf

Figure 5-9. Implementing optimistic concurrency

Chapter 5 Data Storage in the oraCle ClouD

245

$ ls -lh local.parking.pdf | awk '{ print $9 " (" $5 ")" }'

local.parking.pdf (9.9K)

$ oci os object put -bn blueprints --name waw/bemowo/parking.pdf --file

local.parking.pdf --if-match "$ETAG" --profile SANDBOX-USER

WARNING: This object already exists. Are you sure you want to overwrite it? [y/N]: y

Uploading object [####################################] 100%

{

 "etag": "0698bdb4-ddd0-4d12-a030-cd7e55dc25af",

 "last-modified": "Sat, 09 Mar 2019 17:56:35 GMT",

 "opc-content-md5": "z2gpBufEwHkU2SsbutTQsA=="

}

We began with reading the ETag of a particular object. The oci os object head

CLI command uses a lightweight HeadObject API, which fetches only the metadata

associated with an object including the ETag. In our case, we found out that the current

ETag has the value ending with bd7f242d5a34. In the second step, we downloaded the

object’s content using the oci os object get CLI command and appended 2KB of

random data to the local copy to simulate a local change. In the last part, we used the oci

os object put CLI command with the --if-match option to make sure that the object

gets overwritten only if it hasn’t been altered since we fetched the ETag at the beginning.

In the response to the conditional PUT operation, we can see that the new object version

has been assigned a completely new ETag that ends with cd7e55dc25af. If another

application tried to issue the conditional PUT command using an ETag that is no longer

in sync, it would receive an error with status HTTP 412 (Precondition Failed).

$ head -c 1024 /dev/urandom >> local.parking.pdf

$ ls -lh local.parking.pdf | awk '{ print $9 " (" $5 ")" }'

local.parking.pdf (11K)

$ oci os object put -bn blueprints --name waw/bemowo/parking.pdf --file

local.parking.pdf --if-match "$ETAG" --profile SANDBOX-USER

ServiceError:

{

 "code": null,

 "message": "The service returned error code 412",

 "opc-request-id": "f3fee86d-8e97-93b4-1c5e-da3ed572ed35",

 "status": 412

}

Chapter 5 Data Storage in the oraCle ClouD

246

 Programming Object Storage
To interact with the object storage API, we have been using CLI commands in the

examples presented in this chapter until that point. In the real world, however, the

great majority of all API calls to the object storage comes from applications. In this

section, I will show you how to use one of the SDKs, namely, the OCI SDK for Python,

to let your applications use Oracle Cloud Infrastructure object storage. I will also take

this opportunity and explain how to deal with large files by employing a multipart file

upload method.

In Chapter 3, I guided you through a simple process of SDK installation and

configuration. In Chapter 4, we created new groups and users as well as added two new

profiles to the SDK/CLI configuration file: SANDBOX-ADMIN and SANDBOX-USER. Finally,

in the first part of this chapter, we created the required policies in this way to allow

the group members of the sandbox-users group to manage objects in the blueprints

bucket. I am assuming all of this is still in place.

All operations performed on object storage cloud resources with the use of the

OCI SDK for Python are done through the methods of the ObjectStorageClient class.

You can find a comprehensive documentation of this class at https://oracle- cloud-

infrastructure-python-sdk.readthedocs.io/en/latest/api/object_storage/

client/oci.object_storage.ObjectStorageClient.html.

 Multipart Uploads
When dealing with very large files such as those bigger than 100MB, it is recommended

that you split the original file into smaller parts and leverage the multipart upload API

to divide the file into manageable chunks to the cloud. This approach makes the upload

process less prone to the negative impact of any network issues because you would just

need to reupload the single part that failed to be delivered to the cloud. Furthermore, the

multipart upload mechanism makes it possible to parallelize the upload of individual

parts, which results in a faster completion of the upload operation. At the time of writing,

the maximum size for an uploaded object is 10TB. Additionally, each individual part

must be smaller than 50GB. You can create up to 10,000 parts.

A multipart upload operation consists of four phases, which are conceptually

illustrated in Figure 5-10. First, you have to split a large file into smaller parts (1). The

way you do this is up to you and the tools of your choice. Next, you make your first API

Chapter 5 Data Storage in the oraCle ClouD

https://oracle-cloud-infrastructure-python-sdk.readthedocs.io/en/latest/api/object_storage/client/oci.object_storage.ObjectStorageClient.html
https://oracle-cloud-infrastructure-python-sdk.readthedocs.io/en/latest/api/object_storage/client/oci.object_storage.ObjectStorageClient.html
https://oracle-cloud-infrastructure-python-sdk.readthedocs.io/en/latest/api/object_storage/client/oci.object_storage.ObjectStorageClient.html

247

call by sending a CreateMultipartUpload request to start a new multipart upload

(2). In the request, you specify the storage namespace, bucket name, and target object

name. In the response, you will be provided with an upload ID of the newly activated

multipart upload. At this stage, you can begin uploading the parts (3). For each part,

you are sending an UploadPart request to the object storage API. The sequence does

not matter. As I mentioned, you can even upload multiple parts in parallel. In addition

to the storage namespace, the bucket name, the target object name, and the upload

ID, the UploadPart operation expects you to provide an upload part number, different

for each part. In other words, you are responsible for numbering the parts. The part

numbers do not need to be contiguous. The parts will be eventually combined to form

a target object based on the ascending sequence of part numbers. The UploadPart

operation returns a unique entity tag (ETag) for each part you upload. Make sure

you collect the entity tags because you will need them as soon as you are ready to

commit the multipart upload. To have the target object built by object storage from the

uploaded parts, you need to commit the multipart upload (4). You do this by sending

a CommitMultipartUpload request to the API. In the request, you specify a list of pairs

where each pair contains an assigned part number and the corresponding ETag. Only

the parts included in the list will be used to build the target object, no matter how

many parts you’ve uploaded in total.

Figure 5-10. Multipart upload

Chapter 5 Data Storage in the oraCle ClouD

248

If your application cancels an ongoing multipart upload, it sends an

AbortMultipartUpload request to the API. In this way, object storage would close the

multipart upload, effectively removing the parts that have already been uploaded. What

would have happened if you just closed the application without aborting the upload

in a correct manner? Well, the multipart upload would technically remain active and

ready to accept further parts. In such a case, you would be constantly charged for

the uploaded parts until the moment you aborted the upload. Do not worry about

keeping track of your multipart uploads. It is possible to list active uploads by sending

ListMultipartUploads requests to the API. If you expect to have many application

instances that perform multipart updates, it may be smart to implement a recurring job

that uses this method to keep an eye on ongoing and abandoned uploads.

Let’s prepare a test file. This time, we are going to generate a larger file (25M), call it

visualizations.pdf, and place it in the warsaw/bemowo local directory. You can easily

imagine this to be a sales catalog with colorful pictures and visualizations of a particular

property that belongs to a real estate project. Such files are typically considerably large in

size. This is how you generate the file:

$ cd ~/data

$ SIZE=$((25*1024*1024))

$ head -c $SIZE /dev/urandom > warsaw/bemowo/visualizations.pdf

$ ls -lh warsaw/bemowo/visualizations.pdf | awk '{ print $9 " (" $5 ")" }'

warsaw/bemowo/visualizations.pdf (25M)

The application we are about to run will use the OCI SDK for Python. Let’s prepare

an isolated virtual environment for this application using the venv module. Next, we

activate the environment, upgrade the Python package manager (pip), and install the

OCI SDK (the oci module). Finally, we use the pip freeze command to list the installed

modules and verify whether the SDK has been successfully installed.

$ cd

$ python3 -m venv oci-multipart

$ source oci-multipart/bin/activate

(oci-multipart) $ python3 -m pip install --upgrade pip

Collecting pip

.........

Successfully installed pip-19.2.3

Chapter 5 Data Storage in the oraCle ClouD

249

(oci-multipart) $ python3 -m pip install oci

Collecting oci

.........

Successfully installed asn1crypto-0.24.0 certifi-2019.9.11 cffi- 1.12.3

configparser-4.0.2 cryptography-2.7 oci-2.5.1 pyOpenSSL-19.0.0

pycparser-2.19 python-dateutil-2.8.0 pytz-2019.2 six-1.12.0

(oci-multipart) $ python3 -m pip freeze | grep oci

oci==2.5.1

Assuming the blueprints bucket still exists and all credentials are in place, we are

ready to execute the application. Access the application code fetched earlier from my

GitHub account, adapt the paths to the visualizations.pdf and config files, and run

the program.

(oci-multipart) $ cd ~/git/oci-book/chapter05/2-multipart-upload

(oci-multipart) $ chmod u+x multipart.py

(oci-multipart) $ FILE="$HOME/data/warsaw/bemowo/visualizations.pdf"

(oci-multipart) $ CONFIG="$HOME/.oci/config"

(oci-multipart) $./multipart.py "$FILE" 10 "waw/bemowo/visualizations.pdf"

"blueprints" "$CONFIG" SANDBOX-USER

Upload ID: 7de81d8f-44ba-4178-4269-5c25f7d03a86

Part File: /Users/mjk/warsaw/bemowo/visualizations.pdf.part0

Part ETag: 8489D285131C4A32E053C21DC20AAE16

Part File: /Users/mjk/warsaw/bemowo/visualizations.pdf.part1

Part ETag: 84897E38465648C8E053C21DC20AB5FF

Part File: /Users/mjk/warsaw/bemowo/visualizations.pdf.part2

Part ETag: 84897DC3EF364AEEE053C21DC20AF0F0

(oci-multipart) $ deactivate

$

The application split the original file into three parts, as shown in the output of the

following command:

$ ls -lh ~/data/warsaw/bemowo/visual* | awk '{ print $9 " (" $5 ")" }'

data/warsaw/bemowo/visualizations.pdf (25M)

data/warsaw/bemowo/visualizations.pdf.part0 (10M)

data/warsaw/bemowo/visualizations.pdf.part1 (10M)

data/warsaw/bemowo/visualizations.pdf.part2 (5.0M)

Chapter 5 Data Storage in the oraCle ClouD

250

The newly created object has been built from these parts by committing the multi part

upload. To verify whether it is really the same, download the object and use the diff tool.

$ cd ~/data

$ oci os object get -bn blueprints --name "waw/bemowo/visualizations.pdf"

--file visualizations.downloaded.pdf --profile SANDBOX-USER

Downloading object [####################################] 100%

$ ls -lh visualizations.downloaded.pdf | awk '{ print $9 " (" $5 ")" }'

visualizations.downloaded.pdf (25M)

$ diff visualizations.downloaded.pdf warsaw/bemowo/visualizations.pdf

$

No output from the diff command means the files have identical content.

It is time to look at the code you’ve just executed. As shown in Listing 5-2, we have

encapsulated the main program logic within a traditional if __name__ == '__main__'

Python block. In this way, the code is executed only if we run this file directly. Python lets

you treat .py files as importable modules and, in this way, reuse already implemented

logic. In such case, you typically want to be able to call the imported functions, ignoring

the main program logic. When a file is imported as a module by another module, the

__name__ variable no longer has the __main__ value but holds the name of the module

(file), effectively leaving out the main program logic. We’ve run the program directly;

therefore, the main program logic is executed and calls two functions. First, we use the

split_large_file function to split the file into smaller parts. Then, we use the upload_

to_oci function to perform the multipart upload.

Listing 5-2. multipart.py: The Main Function

if __name__ == '__main__':

 filepath = str(sys.argv[1])

 part_size_mb = int(sys.argv[2])

 object_name = str(sys.argv[3])

 bucket_name = str(sys.argv[4])

 config_path = str(sys.argv[5])

 config_profile = str(sys.argv[6])

 part_list = split_large_file(filepath, part_size_mb*1024*1024)

 upload_to_oci(part_list, object_name , bucket_name, config_path,

config_profile)

Chapter 5 Data Storage in the oraCle ClouD

251

Listing 5-3 presents the split_large_file function. It is worth noting the returned

object. In our case, we not only split the content of the original file into smaller chunks

but collect the filenames of newly created files that store the chunks. This lets us return

the list of the paths to the files that store the parts.

Listing 5-3. multipart.py: split_large_file Function

def split_large_file(file_path, part_size):

 """Splits a file into parts"""

 part_list = []

 part_number = 0

 with open(file_path, 'rb') as file_stream:

 part = file_stream.read(part_size)

 while part != b"":

 part_file_path = file_path+'.part'+str(part_number)

 with open(part_file_path, 'wb') as part_stream:

 part_stream.write(part)

 part_list.append(part_file_path)

 part_number += 1

 part = file_stream.read(part_size)

 return part_list

Listing 5-4 presents the upload_to_oci function. The first input argument is the

list of parts, returned from the split_large_file function. We do this to instruct the

function where the part files can be found. At the beginning, the oci.config.from_file

method reads the connection details from the configuration file (the config_path input

argument) using the profile selected (the config_profile input argument). Immediately

afterward, an instance of the oci.object_storage.ObjectStorageClient class is

created and called client. All interactions with the OCI object storage API are done

using the methods of this class. Before we begin the multipart upload, we still have to

obtain the object storage namespace assigned to the cloud account. We perform this task

using the client.get_namespace method. Next, we call our local create_multipart_

upload function that starts the new multipart upload and returns the generated upload

ID. Subsequently, we iterate over the list of parts and call the upload_part function for

each part. This is not a very effective way, though, because we are doing it in a blocking,

sequential manner. However, for the purpose of this example, it is easier to understand

Chapter 5 Data Storage in the oraCle ClouD

252

if I had used a parallel function execution. During each iteration, we collect the object

returned by the upload_part function and aggregate all objects in a list called part_

details_list. Finally, we pass this list together with other input arguments such as the

upload ID and the object storage client class instance to the commit_multipart_upload

local function, which commits the multipart upload.

Listing 5-4. multipart.py: upload_to_oci Function

def upload_to_oci(part_list, object_name, bucket_name, config_path, config_

profile):

 """Performs a multi-part upload to OCI object storage"""

 config = oci.config.from_file(config_path, config_profile)

 client = oci.object_storage.ObjectStorageClient(config)

 storage_namespace = client.get_namespace().data

 upload_id = create_multipart_upload(storage_namespace, bucket_name,

object_name, client)

 part_number = 1

 part_details_list = []

 for part in part_list:

 part_details = upload_part(storage_namespace, bucket_name, object_

name, upload_id, part_number, part, client)

 part_details_list.append(part_details)

 part_number += 1

 commit_multipart_upload(storage_namespace, bucket_name, object_name,

upload_id, part_details_list, client)

Listing 5-5 presents the create_multipart_upload function that uses the

client.create_multipart_upload method to begin the upload. As you can see,

the CreateMultipartUpload API request takes the object storage namespace, the

target bucket, and the target object name as input arguments. The object name,

though, has to be passed encapsulated in an instance of a model class called

CreateMultipartUploadDetails using a keyword argument dictionary conventionally

named kwargs. Last but not least, the function returns the upload ID that has been

generated for this multipart upload.

Chapter 5 Data Storage in the oraCle ClouD

253

Listing 5-5. multipart.py: create_multipart_upload Function

def create_multipart_upload(storage_namespace, bucket_name, object_name, client):

 kwargs = { "object": object_name }

 details = oci.object_storage.models.CreateMultipartUploadDetails(**kwargs)

 upload_id = client.create_multipart_upload(storage_namespace, bucket_

name, details).data.upload_id

 print('Upload ID: '+upload_id)

 return upload_id

Listing 5-6 presents the upload_part function, which is the primary workhorse of the

entire multipart upload process. It takes the path to a part file (the part input argument)

and an assigned part number (the part_number input argument) as input arguments

along with the upload ID, object storage namespace, bucket, object name, and client

class instance. The file is opened as a read-only, binary stream and passed to the

client.upload_part method, which under the hood sends the UploadPart API request.

I mentioned earlier that at the end we need to specify the list of parts to be included in

the multipart upload commit. The list will contain CommitMultipartUploadPartDetails

objects that effectively store the part number and corresponding entity tag each. To

populate the list back in the upload_to_oci function, we create the details object

for each part in the upload_part function based on the known part number and the

returned ETag header that stores the entity tag for the uploaded part.

Listing 5-6. multipart.py: upload_part Function

def upload_part(storage_namespace, bucket_name, object_name, upload_id,

part_number, part, client):

 print('Part File: '+part)

 kwargs = {}

 with open(part, 'rb') as part_stream:

 rsp = client.upload_part(storage_namespace, bucket_name, object_

name, upload_id, part_number, part_stream)

 kwargs = { "part_num": part_number, "etag": rsp.headers['ETag'] }

 print('Part ETag: '+rsp.headers['ETag'])

 return

 oci.object_storage.models.CommitMultipartUploadPartDetails(**kwargs)

Chapter 5 Data Storage in the oraCle ClouD

254

Listing 5-7 presents the commit_multipart_upload function that takes

the list of CommitMultipartUploadPartDetails objects, wraps it into a

CommitMultipartUploadDetails object, and uses the client.commit_multipart_

upload method to send a CommitMultipartUpload request to the API.

Listing 5-7. multipart.py: commit_multipart_upload Function

def commit_multipart_upload(storage_namespace, bucket_name, object_name,

upload_id, part_details_list, client):

 kwargs = { "parts_to_commit": part_details_list }

 details = oci.object_storage.models.CommitMultipartUploadDetails(**kwargs)

 client.commit_multipart_upload(storage_namespace, bucket_name, object_

name, upload_id, details)

I’ve built this sample application to illustrate both the way to use the OCI SDK and

a program multipart upload. To release such an application into production, you would

need to add error handling logic that aborts an ongoing multipart upload in the case

of severe failure. You could also consider adding a retry mechanism for the upload of

individual parts. Finally, the upload of individual parts can be done in parallel to speed

up the entire process.

As a matter of fact, if you are happy to rely on the OCI CLI embedded in your scripts,

you can use the convenient oci os put CLI command. This is the same you’ve already

used earlier in this chapter. Any file larger than what you define with the --part-size

argument is effectively uploaded using the multipart upload API, unless you explicitly

use the --no-multipart option. Moreover, you can define the number of parallel part

uploads with the --parallel-upload-count argument, which defaults to 3.

In this section, you’ve worked with an application that uses the SDK/CLI config file

to let the SDK sign the API calls as an IAM user. This can be annoying because you need

to distribute in some way things like the API signing key and the OCID of a user to the

hosts where your application is supposed to run. Luckily, you do not need to do it for the

applications that are hosted on compute nodes running in the Oracle Cloud. In this case,

you do not even need any dedicated IAM user. Instead, you can leverage the so-called

dynamic groups whose members are compute instances that match certain conditions.

You will learn about them in the next section.

Chapter 5 Data Storage in the oraCle ClouD

255

 Instance Principals
In the context of IAM, each compute instance in Oracle Cloud has its own identity

based on the certificates that are automatically generated for, added to, and rotated

on the instance. In other words, a compute instance is seen as an instance principal,

an independent actor, and is allowed to call OCI APIs with its own name. Instance

principals can be members of dynamic groups only. You have already learned that we

use policies to specify the allowed access over cloud resources for a particular group of

users. Similarly, we can define policies that specify the permitted access for a particular

dynamic group that consists of instance principals. Why do we call dynamic groups

“dynamic”? Simply because they use matching rules to dynamically add or remove their

members, as shown in Figure 5-11.

You formulate matching rules using easy syntax to define the conditions an instance

must meet to be treated as a member of a given dynamic group. Let me give you an

example. This is the matching rule condition that would include all compute instances

that exist in a particular compartment:

instance.compartment.id = 'ocid1.compartment.oc1..aaaaa.........gzwhsa'

You can also point to the instances based on their precise OCIDs.

instance.id = 'ocid1.instance.oc1..........kurtua'

Figure 5-11. Instance principals and dynamic groups

Chapter 5 Data Storage in the oraCle ClouD

256

The most convenient and truly dynamic way, though, is to rely on defined tags

that are attached to compute instances. This is a condition that includes all compute

instances that have the project.realestate custom tag attached.

tag.project.realestate.value

You can create complex conditions as well. The all word will make sure that all

individual conditions have to be met, while the word any will treat the rule as fulfilled

as long as at least one condition is met. This is a condition that includes all compute

instances that exist in a particular compartment and have the project.name custom tag

attached. In this case, the tag value must be set to realestate.

all { instance.compartment.id = 'ocid1.compartment.oc1..aaaaa.........

gzwhsa', tag.projects.name.value = 'realestate' }

Wait a minute? A “custom tag”? Yes. Correct. I haven’t mentioned this before. In

Oracle Cloud, you can attach user-defined tags to compute instances and many other

types of cloud resources. This is a simple yet powerful feature that lets you organize and

track your cloud resources.

 Tagging Resources
Many types of cloud resources including compute instances and object storage buckets

can have custom tags attached. There are two types of tags.

• Free-form tags

• Defined tags

We are going to focus on defined tags because they offer more functionality

including dynamic group matching rules support. Defined tags must be grouped within

tag namespaces. To be precise, a tag namespace contains tag keys. You then attach

tags from a given namespace with a given key to cloud resources such as compute

instances, object storage buckets, or load balancers. While doing this, you can optionally

assign a custom tag value to a particular tag key, but this is not mandatory. Although

you create tag namespaces in compartments, tag namespace names must be unique

within the entire tenancy. Furthermore, the names are case insensitive; therefore, it is

a good practice to keep them either all in lowercase or all in uppercase for consistency.

In contrast to many other types of cloud resources, you are allowed to move tag

namespaces from one compartment to another.

Chapter 5 Data Storage in the oraCle ClouD

257

Note You can assign tags to object storage buckets, but not to the individual
objects. in their case, use the custom metadata feature that was presented earlier
in this chapter.

A tag key that is no longer needed can be made either retired or completely deleted.

A retired tag key is marked as inactive and can no longer be attached to cloud resources.

The existing attachments remain unaffected, however. Tag-specific operations will still

take into account the retired tag keys attached to resources. Retiring a tag namespace

effectively retires all tag keys that belong to the namespace.

Let’s create a new tag namespace called test-projects in the Sandbox

compartment. We are going to use the oci iam tag-namespace create CLI command.

If you have configured the SANDBOX-ADMIN profile in the oci_cli_rc configuration file

as instructed in Chapter 4, you can omit the --compartment-id option like I did in the

following code snippet:

$ oci iam tag-namespace create --name "test-projects" --description "Test

tag namespace: projects" --profile SANDBOX-ADMIN

{

 "data": {

 "compartment-id": "ocid1.compartment.oc1..aa.........gzwhsa",

 "defined-tags": {},

 "description": "Test tag namespace: projects",

 "freeform-tags": {},

 "id": "ocid1.tagnamespace.oc1..aa.........6qu2eq",

 "is-retired": false,

 "name": "test-projects",

 "time-created": "2019-03-09T20:23:33.458000+00:00"

 },

 "etag": "4c49c30092918551319c46469d6051f47309f001"

}

The response body is self-descriptive. We can clearly see that tag namespace

creation was successful. We can always verify whether everything went fine using the

OCI Console, as shown in Figure 5-12. To do so follow these steps:

 1. Go to Menu ➤ Governance ➤ Tag Namespaces.

Chapter 5 Data Storage in the oraCle ClouD

258

Tip if you’ve accidentally created the tag-namespace in the root compartment,
do not retire it; just move it to the Sandbox compartment.

If you are asking yourself what the “cost-tracking tags” column means in the view

presented in Figure 5-12, I will help you. You can designate up to 10 tag keys in total to be

cost tracking enabled in a single moment. These tag keys will be available for selection in

the billings cost analysis view in the OCI Console as an additional filter you apply to trace

the costs in a more granular way. Based on that tags can be attached and detached from

resources in a dynamic way, the cost tracking tags give you more flexibility in tracing the

costs incurred by groups of related cloud resources across their compartments.

We are now going to create a new tag key. The key will be used in a matching rule

to include a compute instance we are about to provision in a dynamic group. This

will let us test instance principals in action. To create a new tag key within a given

namespace, please execute the following CLI command, remembering to replace the

tag namespace OCID:

$ TAG_NAMESPACE_OCID=`oci iam tag-namespace list --query

"data[?name=='test-projects'] | [0].id" --raw-output`

$ oci iam tag create --tag-namespace-id $TAG_NAMESPACE_OCID --name

realestate --description "Real-estate project" --profile SANDBOX-ADMIN

{

 "data": {

 "compartment-id": "ocid1.compartment.oc1..aa.........gzwhsa",

 "defined-tags": {},

 "description": "Real-estate project",

Figure 5-12. Viewing tag namespaces in the OCI Console

Chapter 5 Data Storage in the oraCle ClouD

259

 "freeform-tags": {},

 "id": "ocid1.tagdefinition.oc1..aa.........mnlowa",

 "is-cost-tracking": false,

 "is-retired": false,

 "name": "realestate",

 "tag-namespace-id": "ocid1.tagnamespace.oc1..aa.........6qu2eq",

 "tag-namespace-name": "test-projects",

 "time-created": "2019-03-09T20:57:41.094000+00:00"

 },

 "etag": "83cfd4a247632b699c548886ac4c628891b4eecc"

}

Again, you can use the OCI Console to see your new tag by following these steps:

 1. Go to Menu ➤ Governance ➤ Tag Namespaces.

 2. Click the “test-projects” namespace name.

If you find the CLI more convenient, you can use the oci iam tag list CLI command

to list all the keys within a given namespaces.

$ oci iam tag list --tag-namespace-id $TAG_NAMESPACE_OCID

qsmxlurkwx7pu6qu2eq --all --profile SANDBOX-ADMIN

{

 "data": [

 {

 "compartment-id": "ocid1.compartment.oc1..aa.........gzwhsa",

 "defined-tags": {},

 "description": "Real-estate project",

 "freeform-tags": {},

 "id": "ocid1.tagdefinition.oc1..aa.........mnlowa",

 "is-cost-tracking": false,

 "is-retired": false,

 "name": "realestate",

 "time-created": "2019-03-09T20:57:41.094000+00:00"

 }

]

}

Perfect. Now, we are ready to define a new dynamic group and its matching rule.

Chapter 5 Data Storage in the oraCle ClouD

260

 Dynamic Groups
The members of a dynamic group can be only the compute instances running in Oracle

Cloud Infrastructure that fulfill the conditions defined in the matching rule associated

with the dynamic group. The matching rule will be provided when a dynamic group is

created. We are going to accept, as the dynamic group members, all compute instances

that carry the realestate tag key defined in the test-projects namespace. This is a

matching rule we need to use:

tag.test-projects.realestate.value

Dynamic groups just like standard groups exist in the scope of the entire tenancy. As

a result, the sandbox-admin user won’t be able to create a new dynamic group because

it can manage only the resources within the Sandbox compartment. This is why we are

going to use the default CLI profile that represents the tenancy administrator and create

a new dynamic group on behalf of the tenancy admin.

Tip if you do not have access to the tenancy admin account, please ask your
cloud account admin to create this dynamic group for you.

To create a new dynamic group and explicitly indicate the tenancy-level scope, use

the oci iam dynamic-group create command like this:

$ TENANCY_OCID=`cat ~/.oci/config | grep tenancy | sed 's/tenancy=//'`

$ MATCHING_RULE="tag.test-projects.realestate.value"

$ oci iam dynamic-group create --name realestate-instances --description

"Instances related to the real-estate project" --matching-rule $MATCHING_

RULE -c $TENANCY_OCID

{

 "data": {

 "compartment-id": "ocid1.tenancy.oc1..aa.........3yymfa",

 "description": "Instances related to the real-estate project",

 "id": "ocid1.dynamicgroup.oc1..aa.........hkt7dq",

 "inactive-status": null,

 "lifecycle-state": "ACTIVE",

 "matching-rule": "tag.test-projects.realestate.value",

Chapter 5 Data Storage in the oraCle ClouD

261

 "name": "realestate-instances",

 "time-created": "2019-03-20T20:59:36.353000+00:00"

 },

 "etag": "4c007061997871d3f5ac4a98a225f71be509ac25"

}

We have defined the matching rule as the MATCHING_RULE variable and passed it to

the --matching-rule argument of the oci iam dynamic-group create CLI command.

The command was issued with no explicit --profile; therefore, the CLI used the default

profile that we configured, back in Chapter 3, to use the tenancy admin credentials. The

new dynamic group was called realestate-instances.

With the new dynamic group in place, we are ready to add a new permission

statement to an existing policy. The policy syntax for standard groups and dynamic

groups is virtually the same, with the exception of using the dynamic-group term instead

of the group term. This statement allows the instance principals of the newly created

dynamic group to manage objects in the Sandbox compartment.

allow dynamic-group realestate-instances to manage objects in compartment

Sandbox where target.bucket.name='blueprints'

We are going to reuse the same policy that was created earlier in this chapter. To

perform an update, we need a file with all statements that are to be present within the

policy. Listing 5-8 presents the two existing and the third, new statement.

Listing 5-8. sandbox-users.policies.storage.2.json

[

"allow group sandbox-users to read buckets in compartment Sandbox where

target.bucket.name='blueprints'",

"allow group sandbox-users to manage objects in compartment Sandbox where

target.bucket.name='blueprints'",

"allow dynamic-group realestate-instances to manage objects in compartment

Sandbox where target.bucket.name='blueprints'"

]

The file is available in the Git repository at oci-book/chapter05/1- policies/.

Chapter 5 Data Storage in the oraCle ClouD

262

The policy we are about to update was originally created in the Sandbox

compartment. To find this policy by name, we can use the oci iam policy list CLI

command to additionally apply a local JMESPath filter to display only the policy OCID.

Let’s execute the oci iam policy update CLI command from the directory that

stores the sandbox-users.policies.storage.2.json file. We will reference the relative

path to the file using the --statements argument. These are the commands:

$ cd ~/git/oci-book/chapter05/1-policies

$ POLICY_ID=`oci iam policy list --all --query "data[?name=='sandbox-users-

storage-policy'] | [0].id" --raw-output --profile SANDBOX-ADMIN`

$ oci iam policy update --policy-id $POLICY_ID --statements file://sandbox-

users.policies.storage.2.json --version-date "" --profile SANDBOX-ADMIN

WARNING: The value passed to statements will overwrite all existing

statements for this policy. The existing statements are as follows:

[

 "allow group sandbox-users to read buckets in compartment Sandbox where

target.bucket.name='blueprints'",

 "allow group sandbox-users to manage objects in compartment Sandbox where

target.bucket.name='blueprints'"

]

Are you sure you want to continue? [y/N]: y

{

 "data": {

 "compartment-id": "ocid1.compartment.oc1..aa.........gzwhsa",

 "defined-tags": {},

 "description": "Storage-related policy for regular Sandbox users",

 "freeform-tags": {},

 "id": "ocid1.policy.oc1..aa.........tiueya",

 "inactive-status": null,

 "lifecycle-state": "ACTIVE",

 "name": "sandbox-users-storage-policy",

 "statements": [

 "allow group sandbox-users to read buckets in compartment Sandbox

where target.bucket.name='blueprints'",

Chapter 5 Data Storage in the oraCle ClouD

263

 "allow group sandbox-users to manage objects in compartment Sandbox

where target.bucket.name='blueprints'",

 "allow dynamic-group realestate-instances to manage objects in

compartment Sandbox where target.bucket.name='blueprints'"

],

 "time-created": "2019-03-07T15:52:21.583000+00:00",

 "version-date": null

 },

 "etag": "79b1393841a75cb5cf8b22586d731e52b9617cda"

}

Additionally, at the time of writing, we have to pass the --version-date argument

to the CLI command; otherwise, the validation fails. This parameter defines the effective

policy verb and resource type scope. Using an empty value for the --version-date

argument will include all future resource types added to the resource type family as well

as changes in policy verb definitions. For the purpose of this exercise, it actually does not

matter, but the parameter has to be set.

Until this point, we created a new tag namespace and a defined tag key. Next, we

specified a new dynamic group with a matching rule that accepts a compute instance as

a member of the dynamic group, provided that the instance carries the newly defined

tag. Finally, we added to the existing policy a new statement to let the dynamic group

members manage objects in the Sandbox compartment. We are ready to provision the

infrastructure shipped with a custom application that will allow us to see an instance

principal in action.

 Accessing Storage from Instances
In this section, you are going to apply Terraform infrastructure code that provisions

a simple set of cloud resources including a single CentOS-based virtual machine. On

the machine, we will run a simple Python-based application wrapped into a systemd-

based Linux operating system service. The application will list a set of objects in a

particular bucket at regular intervals and create a summary text file in the same bucket.

We are going to use the OCI SDK for Python to implement the logic. The application,

or, to be more precise, the compute instance on which the application is running, will

authenticate as the so-called instance principal. In this way, you will avoid storing

passwords or keys on that compute instance. The application logic is conceptually

shown in Figure 5-13.

Chapter 5 Data Storage in the oraCle ClouD

264

Earlier in this chapter, you already experimented a bit with the OCI SDK for Python

in the context of object storage APIs. The code you ran before was using your local OCI

CLI/SDK configuration file and authenticated as the sandbox-user user. The application

had to be able to access the private API signing key and know a couple of other details,

such as the user OCID and region, to successfully sign each request. This is not a very

portable setup, is it? This time we are going to let the application authenticate as an

instance principal. In this way, we do not need to ship or define any keys or user details

on the compute instance where our application is running. Instead, the application will

make API calls on behalf of the compute instance. This increases security and makes the

entire management simpler and the application more scalable.

The entire solution will be built in a fully automated way using the scripts I prepared. You

just need to “press the button” and watch. The infrastructure is nearly the same as the one

deployed in Chapter 3. Just a couple of names have changed. The cloud-init configuration

file is completely new, though. I will explain everything later. First, let’s see it in action.

I am assuming the environment variables used by Terraform are still in place. You can

verify this using the env | grep TF_VAR Bash commands. If they are gone, you should be able

to load them using the tfvars.env.sh script, which you created as part of the Chapter 3 exercise.

$ source ~/tfvars.env.sh

The Terraform code assumes the oci_id_rsa.pub public SSH key is present in the

~/.ssh directory and references the key from the compute.tf infrastructure code file.

Having fulfilled the aforementioned prerequisites, run the terraform init command

to download the newest OCI plugin and execute the terraform apply command to

provision the infrastructure.

Figure 5-13. Accessing object storage from the OCI instance

Chapter 5 Data Storage in the oraCle ClouD

265

$ cd ~/git/oci-book

$ cd chapter05/3-instance-principals/infrastructure

$ find . \(-name "*.tf" -o -name "*.yaml" \)

./app/compute.tf

./app/vcn.tf

./app/cloud-init/appvm.config.yaml

./app/vars.tf

./modules.tf

./vcn.tf

./provider.tf

./vars.tf

$ terraform init

Initializing modules...

- module.app

 Getting source "app"

Initializing provider plugins...

- Checking for available provider plugins on https://releases.hashicorp.

com...

- Downloading plugin for provider "oci" (3.45.0)...

* provider.oci: version = "~> 3.45"

Terraform has been successfully initialized!

$ terraform apply -auto-approve

data.oci_identity_availability_domains.ads: Refreshing state...

data.oci_core_images.centos_image: Refreshing state...

oci_core_virtual_network.app_vcn: Creating...

oci_core_virtual_network.app_vcn: Creation complete after 1s

oci_core_internet_gateway.app_igw: Creating...

module.app.oci_core_security_list.app_sl: Creating...

module.app.oci_core_security_list.app_sl: Creation complete after 0s

oci_core_internet_gateway.app_igw: Creation complete after 1s

module.app.oci_core_route_table.app_rt: Creating...

module.app.oci_core_route_table.app_rt: Creation complete after 0s

module.app.oci_core_subnet.app_subnet: Creating...

Chapter 5 Data Storage in the oraCle ClouD

266

module.app.oci_core_subnet.app_subnet: Creation complete after 0s

module.app.oci_core_instance.app_vm: Creating...

module.app.oci_core_instance.app_vm: Still creating... (10s elapsed)

module.app.oci_core_instance.app_vm: Still creating... (20s elapsed)

module.app.oci_core_instance.app_vm: Still creating... (30s elapsed)

module.app.oci_core_instance.app_vm: Still creating... (40s elapsed)

module.app.oci_core_instance.app_vm: Still creating... (50s elapsed)

module.app.oci_core_instance.app_vm: Creation complete after 55s

module.app.data.oci_core_vnic_attachments.app_vnic_attachment: Refreshing

state...

module.app.data.oci_core_vnic.app_vnic: Refreshing state...

Apply complete! Resources: 6 added, 0 changed, 0 destroyed.

Outputs:

app_instance_public_ip = 130.61.18.158

Wait until you see the public IP assigned to your newly provisioned virtual machine.

This time, in my case, it is 130.61.18.158. Even though the instance has been announced

as created and ready, we have to remember that the boot process is, probably, still

running. You may need to wait a couple of seconds until the ssh daemon starts accepting

connections. Let’s connect to the instance.

$ APP_VM_PUBLIC_IP=`terraform output app_instance_public_ip`

$ ssh -i ~/.ssh/oci_id_rsa opc@$APP_VM_PUBLIC_IP

The authenticity of host '130.61.18.158' can't be established.

ECDSA key fingerprint is SHA256:YJE8Q........./.........LSQxtM.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '130.61.18.158' (ECDSA) to the list of known hosts

The completion of tasks we’ve set for cloud-init can take up to a minute. You can

always use the sudo tail -f /var/log/cloud-init.log command on the compute

instance to trace the progress of cloud-init execution and debug any unexpected

problems. You can periodically execute the systemctl status command, passing

reportissuer as the service name. At some point of the time, you should be able to see a

custom reportissuer service loaded and active. This is our Python application wrapped

into a systemd unit. If you look at the service logs, you will see that every 30 seconds

there is a report said to be generated.

Chapter 5 Data Storage in the oraCle ClouD

267

[opc@app-vm]$ sudo systemctl status reportissuer

● reportissuer.service - Issue Report Job

 Loaded: loaded (/etc/systemd/system/reportissuer.service; enabled;

vendor preset: disabled)

 Active: active (running) since Thu 2019-03-21 16:14:09 GMT; 5min ago

 Main PID: 13978 (python3.6)

 CGroup: /system.slice/reportissuer.service

 └─13978 python3.6 /home/opc/reportissuer.py

Mar 21 16:17:45 app-vm reportissuer.py[13978]: Creating a report

Mar 21 16:17:45 app-vm reportissuer.py[13978]: ### Report generated

2019- 03- 21 16:17:45.634197

Mar 21 16:18:15 app-vm reportissuer.py[13978]: Creating a report

Mar 21 16:18:16 app-vm reportissuer.py[13978]: ### Report generated

2019- 03- 21 16:18:16.170609

Mar 21 16:18:46 app-vm reportissuer.py[13978]: Creating a report

Mar 21 16:18:47 app-vm reportissuer.py[13978]: ### Report generated

2019- 03- 21 16:18:47.605280

Mar 21 16:19:17 app-vm reportissuer.py[13978]: Creating a report

[opc@app-vm]$ exit

If you look in the bucket, you should be able to see a new object called waw/

bemowo/summary.txt. This object gets generated and uploaded every 30 seconds by

the reportissuer service running on the compute instance you’ve just provisioned.

Figure 5-14 presents the new object in the OCI Console.

Chapter 5 Data Storage in the oraCle ClouD

268

Are you curious about the content of the report? Sure, you are. Return to your local

command line closing the SSH connection to the compute instance. Use the oci os

object get CLI command using the --file - option to dump the content of the waw/

bemowo/summary.txt object to the standard output.

$ oci os object get -bn blueprints --name "waw/bemowo/summary.txt" --file -

--profile SANDBOX-USER

waw/bemowo/101.pdf (29.0K)

waw/bemowo/102.pdf (30.0K)

waw/bemowo/105.pdf (18.0K)

waw/bemowo/107.pdf (23.0K)

waw/bemowo/115.pdf (33.0K)

waw/bemowo/parking.pdf (9.90625K)

waw/bemowo/summary.txt (0.2470703125K)

Report generated 2019-03-21 16:34:33.971448

As you can see, the report contains the names and sizes of all objects prefixed with

the waw/bemowo string. The last line shows the report creation timestamp, the same as

last logged by the reportissuer service that is running on the compute instance.

Listing 5-9 presents the cloud-config file that gets uploaded to the compute instance

and processed by the cloud-init module. As a result, a series of steps takes place. First,

Figure 5-14. Summary object uploaded by an instance principal

Chapter 5 Data Storage in the oraCle ClouD

269

there is a new unit file added to the compute instance filesystem at the following

path: /etc/systemd/system/reportissuer.service. This unit file is a base for the

new systemd service that encapsulates our application. It specifies a few variables

that provide runtime configuration for the reportissuer.py script, which is the main

service executable here. The runcmd section of the cloud config file defines further

actions performed on the instance such as the installation of Python 3 and the OCI

SDK, downloading the reportissuer.py script from the GitHub repository, and a few

commands that altogether effectively add a new systemd service based on the unit file

we’ve supplied.

Listing 5-9. appvm.config.yaml

#cloud-config

write_files:

- content: |

 [Unit]

 Description = Issue Report Job

 After = network.target

 [Service]

 Environment=APP_BUCKET_NAME=blueprints

 Environment=APP_OBJECT_NAME=waw/bemowo/summary.txt

 Environment=APP_OBJECT_PREFIX=waw/bemowo

 Environment=APP_POLLING_INTERVAL_SECONDS=30

 Environment=PYTHONUNBUFFERED=1

 ExecStart = /home/opc/reportissuer.py

 User = opc

 [Install]

 WantedBy = multi-user.target

 path: /etc/systemd/system/reportissuer.service

runcmd:

 - [yum, -y, install, "https://centos7.iuscommunity.org/ius-release.rpm"]

 - [yum, -y, install, python3]

 - [yum, -y, install, python3-pip]

 - [python3, -m, pip, install, --upgrade, pip]

 - [python3, -m, pip, install, oci]

Chapter 5 Data Storage in the oraCle ClouD

270

 - [wget, "https://raw.githubusercontent.com/mtjakobczyk/oci-book/master/

chapter05/3-instance-principals/applications/reportissuer.py"]

 - [mv, reportissuer.py, "/home/opc/"]

 - [chown, "opc:opc", "/home/opc/reportissuer.py"]

 - [chmod, "u+x", "/home/opc/reportissuer.py"]

 - [ln, -s, "/etc/systemd/system/reportissuer.service", "/etc/systemd/

system/multi-user.target.wants/reportissuer.service"]

 - [systemctl, enable, reportissuer.service]

 - [systemctl, start, reportissuer.service]

If you are interested in the implementation of the reportissuer service, especially

in the way it authenticates as an instance principal, read on. Listing 5-10 shows the main

function of the program.

Listing 5-10. reportissuer.py: The Main Function

if __name__ == '__main__':

 bucket_name = os.environ['APP_BUCKET_NAME']

 summary_object_name = os.environ['APP_OBJECT_NAME']

 object_prefix = os.environ['APP_OBJECT_PREFIX']

 polling_interval_seconds = int(os.environ['APP_POLLING_INTERVAL_SECONDS'])

 tmp_directory = os.environ['HOME']

 while True:

 print('Creating a report')

 signer = oci.auth.signers.InstancePrincipalsSecurityTokenSigner()

 client = oci.object_storage.ObjectStorageClient(config={},

signer=signer)

 storage_namespace = client.get_namespace().data

 report_entry_list = prepare_report_entries(storage_namespace,

bucket_name, object_prefix, client)

 upload_report(report_entry_list, tmp_directory, storage_namespace,

bucket_name, summary_object_name, client)

 time.sleep(polling_interval_seconds)

Chapter 5 Data Storage in the oraCle ClouD

271

The first few lines read the environment variables into the corresponding local

program variables. The values have been defined in the Service section of the uploaded

systemd unit file (reportissuer.service). The recurring nature of the process is

implemented through an infinite while loop. At the end of each iteration, the process

thread sleeps for the interval defined through the APP_POLLING_INTERVAL_SECONDS

environment variable. The prepare_report_entries function is responsible for listing

the objects and preparing a list for the upload_report function, which uploads a newly

created summary file to the bucket. For each iteration, there is an instance of object

storage client class created and set to use the instance principal security token signer.

These two simple lines result in the use of instance-principal-based request signing:

signer = oci.auth.signers.InstancePrincipalsSecurityTokenSigner()

client = oci.object_storage.ObjectStorageClient(config={}, signer=signer)

All other SDK client classes can be used in the same way to leverage instance

principals and dynamic groups. This can greatly simplify the authentication patterns for

applications running on Oracle Cloud Infrastructure compute instances because you no

longer need to supply keys and user details to every compute instance.

Let’s take a brief look at the two functions that are called in the main function.

Listing 5-11 presents the prepare_report_entries function. The client.list_objects

method calls the object storage API to fetch the list of objects whose names start with a

particular prefix. The keyworded argument fields="name,size" informs the API what

fields we are interested in. If we’ve left it out, the API would not return the size field

values in the response. We iterate over the returned objects and use concatenation to

prepare a report entry. At the end, we return a list with the report entries we’ve created.

Listing 5-11. reportissuer.py: prepare_report_entries Function

def prepare_report_entries(storage_namespace, bucket_name, object_prefix, client):

 report_entries = []

 objects = client.list_objects(storage_namespace, bucket_name,

fields="name,size", prefix=object_prefix).data.objects

 for obj in objects:

 entry = str(obj.name)+' ('+str(obj.size/1024)+'K)'

 report_entries.append(entry)

 return report_entries

Chapter 5 Data Storage in the oraCle ClouD

272

Listing 5-12 covers the upload_report function, which takes the list of report entries

and writes them to a new temporary file. To avoid name collisions, we include a newly

generated UUID in the name of the file. The last line in the file contains the report

creation timestamp. The same string is written to the standard output you saw in the

systemd service status log a moment ago. The client.put_object method uploads the

file contents as a new object. At the end, the temporary file is removed from the local

filesystem.

Listing 5-12. reportissuer.py: upload_report Function

def upload_report(report_entry_list, tmp_directory, storage_namespace,

bucket_name, object_name, client):

 tmp_report_filename = tmp_directory+'/bucket_report.'+str(uuid.

uuid4())+'.txt'

 with open(tmp_report_filename, 'w') as stream:

 for entry in report_entry_list:

 stream.write(entry+'\n')

 report_timestamp_str = '### Report generated '+str(datetime.

datetime.now())+'\n'

 stream.write(report_timestamp_str)

 print(report_timestamp_str)

 with open(tmp_report_filename, 'r') as stream:

 client.put_object(storage_namespace, bucket_name, object_name,

stream)

 os.remove(tmp_report_filename)

This concludes the instance principal demonstration. You can now use the well-

known terraform destroy command to terminate all cloud resources like this:

$ terraform destroy --auto-approve

oci_core_virtual_network.app_vcn: Refreshing state...

data.oci_identity_availability_domains.ads: Refreshing state...

data.oci_core_images.centos_image: Refreshing state...

oci_core_internet_gateway.app_igw: Refreshing state...

oci_core_security_list.app_sl: Refreshing state...

oci_core_route_table.app_rt: Refreshing state...

oci_core_subnet.app_subnet: Refreshing state...

Chapter 5 Data Storage in the oraCle ClouD

273

oci_core_instance.app_vm: Refreshing state...

data.oci_core_vnic_attachments.app_vnic_attachment: Refreshing state...

data.oci_core_vnic.app_vnic: Refreshing state...

module.app.oci_core_instance.app_vm: Destroying...

module.app.oci_core_instance.app_vm: Destruction complete after 2m15s

module.app.oci_core_subnet.app_subnet: Destroying...

module.app.oci_core_subnet.app_subnet: Destruction complete after 0s

module.app.oci_core_route_table.app_rt: Destroying...

module.app.oci_core_security_list.app_sl: Destroying...

module.app.oci_core_security_list.app_sl: Destruction complete after 1s

module.app.oci_core_route_table.app_rt: Destruction complete after 1s

oci_core_internet_gateway.app_igw: Destroying...

oci_core_internet_gateway.app_igw: Destruction complete after 0s

oci_core_virtual_network.app_vcn: Destroying...

oci_core_virtual_network.app_vcn: Destruction complete after 0s

Destroy complete! Resources: 6 destroyed.

Oracle Cloud Infrastructure comes with rich monitoring capabilities with a broad

variety of service-specific metrics. In the case of object storage, there are two metrics

available for buckets: the number of objects and the aggregated size of a bucket. To view

the monitoring data in the OCI Console, follow these steps:

 1. Go to Menu ➤ Object Storage ➤ Object Storage.

 2. Click the bucket name.

 3. On the Resource tab, select Metrics.

If you click one of the charts, you will be presented with a detailed view, as shown in

Figure 5-15.

Chapter 5 Data Storage in the oraCle ClouD

274

Note at the bottom of the detailed chart, you will see a query that was used to
produce the displayed results. oracle Cloud infrastructure uses the Monitoring
Query language (MQl), which can be used to create custom charts.

Figure 5-15. Viewing object storage metrics

Chapter 5 Data Storage in the oraCle ClouD

275

 Public Access
Sometimes, you may decide to designate selected buckets to allow anonymous read- only

access to serve the content to the general public. This approach may be useful when

building edge solutions such as mobile apps that rely on public content. For example,

you could store selected images, videos, and articles in a bucket that allows everyone to

download these objects. In such a case, you can simply use public buckets. When using

the CLI, you employ the --public-access-type option to define whether a bucket is

private or public. The default value, NoPublicAccess, results in creating a private bucket.

There are two access modes a public bucket can have.

• ObjectRead

• ObjectReadWithoutList

Both will allow the unauthenticated, read-only access to the objects. The only

difference is that ObjectReadWithoutList will disable object listings for unauthenticated

users. This may be helpful to serve the objects only to the holders of exact links and avoid

having your content scrapped, especially if you are using object names that are hard or

impossible to guess. It is technically possible to change the public access type back and

forth from public to private and vice versa, but it is not considered a best practice.

What if you have a bucket with a large number of objects and you find yourself in

a situation where you would benefit from temporarily allowing unauthenticated read-

write access to just one of these objects? In this and other scenarios, you may find pre-

authenticated requests useful. A pre-authenticated request comes with a dynamically

generated unique URL that remains active for a defined period of time. Anyone holding

the URL can use the object storage in the scope allowed by the pre-authenticated

request. If you create a pre-authenticated request for a particular object, you can choose

from three access types.

• ObjectRead

• ObjectWrite

• ObjectReadWrite

The URLs are nearly impossible to guess. As long as your distribution channel is

secure and you trust the applications at the edge, you could consider building a solution

that relies on pre-authenticated requests to access the objects by applications that

Chapter 5 Data Storage in the oraCle ClouD

276

neither use instance principals nor use authenticated users. This is how you create a

pre- authenticated request for one of the PDF files in the blueprints bucket using the CLI:

$ date +"%Y-%m-%d"

2019-09-29

$ ONE_WEEK_LATER="2019-10-06"

$ MIDNIGHT="T00:00:00.000Z"

$ oci os preauth-request create -bn blueprints --name waw-bemowo-105- par

--access-type ObjectRead --time-expires "ONE_WEEK_LATERMIDNIGHT" -on waw/

bemowo/105.pdf --profile SANDBOX-ADMIN

{

 "data": {

 "access-type": "ObjectRead",

 "access-uri": "/p/n0218vRTg4FW5d1t1nV-uMPp471HFIxNccISzFiU2Qg/n/

jakobczyk/b/blueprints/o/waw/bemowo/105.pdf",

 "id": "tk/aQTCjIGsF1EJ1SsMAMVOwPNW4RErVneNfLjR5LN8=:waw/bemowo/105.pdf",

 "name": "waw-bemowo-105-par",

 "object-name": "waw/bemowo/105.pdf",

 "time-created": "2019-09-29T23:16:20.599000+00:00",

 "time-expires": "2019-10-06T00:00:00+00:00"

 }

}

No matter if a pre-authenticated request is created through the OCI Console or with

the use of CLI, you will see the generated access URI only once, so make sure that either

you or your application code does read it. If you miss doing it, the pre-authenticated

request will be useless. The --time-expires option indirectly defines the time window

in which the access URI remains active. It is not possible to extend or shorten this period,

but you are free to delete the existing request and create a new pre-authenticated request

for the same object to alter the expiration time. Because of these reasons, before you

build a solution that heavily relies on pre-authenticated requests, make sure you are able

to implement a reliable distribution and notification channel to provide the applications

with up-to-date pre-authenticated requests.

Chapter 5 Data Storage in the oraCle ClouD

277

To use the access URI, you need to enrich the value returned in the data.access-uri

field by prepending the region-specific base URL like in this code snippet:

https://objectstorage.eu-frankfurt-1.oraclecloud.com/p/n0218vRTg4FW5d1t1nV-

uMPp471HFIxNccISzFiU2Qg/n/jakobczyk/b/blueprints/o/waw/bemowo/105.pdf

You can try opening the link in a web browser. Do not forget to use your link instead

of the one shown. The PDF file, or more precisely a random binary file that imitated a

PDF file in this chapter, will get downloaded to your local machine, even though you

have not authenticated yourself in any way.

You can use the OCI Console, as shown in Figure 5-16, or the CLI to list the existing pre-

authenticated requests or delete some of them before the expiry time is reached, if needed.

Figure 5-16. Viewing active pre-authenticated request in the OCI Console

A pre-authenticated request can be created for a bucket as well. In this case, the

only access type allowed is AnyObjectWrite the which effectively lets the URL holders

manage all objects inside that bucket.

 Cleanup
We will no longer need the object storage resources created during the exercises in this

chapter. You can remove them. There is one exception to that. Do not remove the IAM

policies. We will need them later.

Chapter 5 Data Storage in the oraCle ClouD

278

This is how you can use the OCI CLI to remove the pre-authenticated request, the

objects, and the blueprints bucket:

$ OS_PARID=`oci os preauth-request list -bn blueprints --query

"data[?name=='waw-bemowo-105-par'] | [0].id" --raw-output`

$ oci os preauth-request delete -bn blueprints --par-id $OS_PARID

Are you sure you want to delete this resource? [y/N]: y

$ oci os object bulk-delete -bn blueprints

WARNING: This command will delete 16 objects. Are you sure you want to

continue? [y/N]: y

$ oci os bucket delete -bn blueprints

Are you sure you want to delete this resource? [y/N]: y

Removing the objects will stop the billing charges for the storage space they occupy.

 Summary
Object storage was the primary topic of this chapter. At the beginning, we talked about

objects and how they are organized into buckets. Afterward, you learned some basic

object manipulation techniques using the CLI. What came then was the discussion

about the importance of object name prefixes and CLI-based examples on how to use

them properly. Additionally, I described the bulk commands that come with the CLI and

presented how to use the object storage API to list objects in pages and thus handle large

sets of objects in a safe way. We also covered the aspect of concurrent updates and the

role of ETags in this context. A large part of this chapter was devoted to programming

object storage. You learned how to use the OCI SDK for Python to handle multipart

uploads and let applications authenticate as instance principals. You were also able to

familiarize yourself with the concept of defined tags and use them in a matching rule

of a dynamic group. Finally, I briefly presented the ways to let anonymous users access

the objects either thanks to public buckets or through pre-authenticated requests. In the

next chapter, we will explore some fundamental patterns that you are going to apply to

your compute and networking cloud resources in Oracle Cloud Infrastructure.

Chapter 5 Data Storage in the oraCle ClouD

279
© Michał Tomasz Jakóbczyk 2020
M. T. Jakóbczyk, Practical Oracle Cloud Infrastructure, https://doi.org/10.1007/978-1-4842-5506-3_6

CHAPTER 6

Patterns for Compute
and Networking
The practice of information technology attaches great importance to the notion of

reusability, which does not limit itself to software libraries, modules, or services, but is

often expressed in a form of architectural patterns. In this chapter, I am going to guide

you through some basic cloud infrastructure patterns that are meant to help to solve the

standard problems you often encounter while designing cloud solutions. This chapter is

meant to be a loose discussion built around hands-on exercises. It is not supposed to be

a comprehensive catalog with architectural patterns.

If you recall Chapter 2 and what you read there about planning cloud infrastructure

in Oracle Cloud, it becomes clear that you start designing cloud infrastructure by

preparing the appropriate compartment hierarchy and outlining virtual networking. In

Chapter 4, I described aspects related to the use of compartments. Now, we are going to

look at virtual cloud networks.

 Virtual Networking
A virtual cloud network is a software-defined network used to organize and provide

connectivity between compute instances. It has regional scope, which means that

you create each VCN in one particular Oracle Cloud region. A VCN alone is useless

unless you split it into subnets. Both VCNs and their subnets are conceptually close to

traditional networks that employ IP addressing and address range division. If you’ve

followed the previous chapters, you’ve already gained some hands-on experiences with

VCN-related resources. Furthermore, you probably remember well that every compute

instance must exist in the context of a particular virtual cloud network. To be more

precise, every compute instance must be attached to at least one subnet through one

280

or more virtual network interface cards (VNICs). A subnet can be bound to a specific

availability domain or span all availability domains within the entire region. The first

type is known as an AD-specifc subnet, while the latter is known as a regional subnet.

Both subnet types are shown in Figure 6-1.

Figure 6-1. Regional and AD-specific subnets

The regional scope of a particular subnet is usually seen as more flexible because

it makes it possible to create compute instances in different availability domains,

simultaneously keeping them attached to the very same subnet. Why would we ever

need to use an AD-specific subnet instead of a regional subnet? Initially, a subnet

always had to be created within a particular availability domain. In other words, in the

beginning, only AD-specific subnets were possible, which imposed the necessity to use

multiple subnets when designing highly available solutions that rely on multiple ADs.

With the arrival of regional subnets, you may stick to using them in the majority of cases.

Moreover, Oracle recommends using regional subnets if possible. It does make sense

to employ AD-specific subnets in a situation in which you want to add a layer of control

that all instances attached to that subnet are always created in a particular AD.

Chapter 6 patterns for Compute and networking

281

 Private IPs
As soon as a new compute instance has been launched, its VNIC receives a private

IPv4 address from the IP address range of the subnet to which the VNIC is attached.

This is the primary private IP address. The address itself can be chosen by you or

automatically selected by the Oracle Cloud control plane. It is not possible to remove or

change the primary private IP on an existing instance. Its lifecycle is strictly associated

with the lifetime of the compute instance, which means that the primary private IP

gets terminated on the instance’s destruction. The private IP address lets your instance

communicate with other instances, as presented in Figure 6-2, in the same or, what you

will learn soon, other interconnected VCNs. Optionally, it is used in the data exchange

with the machines in an on-premise network if FastConnect or VPN is in place.

Figure 6-2. Private IPs

If there is a “primary” VNIC, there must be a notion of “secondary” VNIC; otherwise,

the name wouldn’t make a lot of sense, would it? Indeed, it is possible to create

secondary VNICs on a single instance. This is actually the way to go if your intention is to

attach an instance to more than one subnet. Figure 6-3 shows a list of VNICs of a single

compute instance. Each VNIC is in this case attached to a different subnet. Adding a

secondary VNIC is just a first step in providing multisubnet connectivity. Depending on

instance shape and image, you will still have to configure a new network interface within

the operating system.

Chapter 6 patterns for Compute and networking

282

From a management point of view, VNICs and private IPs are regular cloud resources

just like compute instances. This means they are controlled through dedicated API

endpoint paths and, as a result, can be managed separately to the extent allowed by their

dependencies. What do I mean by their dependencies? For example, it is not possible to

provision a nonattached VNIC cloud resource alone. It must always exist in the context

of a compute instance. If you are creating a secondary VNIC, the AttachVnic API indeed

requires a compute instance OCID.

We have just learned that there is a primary private IP created for each VNIC cloud

resource. It cannot be removed and is deleted always with its parent VNIC. Sometimes,

you need more flexibility. Imagine a situation where you would like to implement a

floating IP architecture for the purpose of high availability. A floating IP is an IP address

that can be moved from one compute instance to another, in this way enabling active-

passive high availability. Should the current private IP holder abruptly fail, the passive

instance, also known as the standby, would take over the floating IP, in this way securing

service continuity. To implement such a scenario, you need to rely on a secondary private

IP cloud resource in conjunction with cluster engine software such as Heartbeat or

Corosync as well as a cluster resource manager such as Pacemaker. A secondary private

IP can be added to any kind of VNIC (both primary and secondary). Another use case

for attaching more than one private IP to an existing VNIC is having multiple services

Figure 6-3. Primary and secondary VNICs

Chapter 6 patterns for Compute and networking

283

running on a single compute instance. Sometimes, you may find it useful to bind each of

these services to a separate private IP. Figure 6-4 shows two private IP resources attached

to a single VNIC.

Figure 6-4. Primary and secondary private IP addresses

Note in most cases, you will be using compute instances with just a single VniC
and a single private ip each.

 Public IPs
A compute instance may, but not need to, hold a public IP address. If you are using

Oracle Cloud as a computing power extension or a managed database provider, it can

be securely connected to your on-premise network using either FastConnect or VPN.

In such a case, usually no direct connection to the Internet for your cloud instances is

even desired. In such a situation, you access these compute instances from within your

private on-premise network and the instances download updates and new software

from some kind of a private artifact repository that stores various types of software

such as RPM packages, npm and Maven libraries, Docker images, or even Helm charts.

Nowadays, however, more and more especially newly established businesses are

purely running in the cloud. In their case, access to the Internet is indispensable for

at least a subset of compute instances.

Chapter 6 patterns for Compute and networking

284

Let’s consider the simplest scenario for a solitary compute instance. The scenario

that assumes a given instance has its own Internet identity, understood as a public IP

address. There are usually three main reasons why an instance needs a public IP address.

• It hosts an application that exposes a public web service.

• Its operating system has to download updates or additional software.

• You want to establish an SSH connection to access terminal.

Public IP addresses can be assigned only to these compute instances that are

attached to public subnets. You choose whether a subnet is public or private during

subnet creation. In the OCI Console, this choice is pretty straightforward. You just have

to tick the correct checkbox. You already trained it in the course of Chapter 2. When

using an API, SDK, or CLI, on the other hand, you set the public or private nature of a

particular subnet indirectly through a value of the prohibitPublicIpOnVnic element

(API), the prohibit_public_ip_on_vnic key (Terraform), or the --prohibit-public-

ip-on-vnic option (CLI). You already used it once if you followed Chapter 3. All in all,

private subnets always prohibit attached instances from having a public IP on the VNIC

attached to the private subnet.

In a simple scenario, to access the Internet, apart from a public IP attached to an

instance, three further conditions must be met.

• A VCN contains an active Internet gateway (IGW).

• A route rule directs outbound traffic to the IGW.

• Security rules allow a particular type of inbound and outbound

traffic.

In the course of the previous chapters, you had multiple opportunities to work with

these resources in the Console as well as using the CLI and Terraform.

How is a public IP address actually attached to an instance? From a management point

of view, a public IP cloud resource is always associated with a private IP cloud resource.

For the majority of use cases, this happens in the background, and you do not even need to

do anything special about that. Because there is a finite number of public IPv4 addresses,

Oracle Cloud uses public IP address pools. By default, a newly created instance gets an

available public IPv4 address from the Oracle Cloud address pool, as shown in Figure 6-5.

After an instance has been terminated, the address goes back to the pool and may be

reused in the future, also by other customers. This is called an ephemeral public IP. Its

lifecycle is strictly tied to a particular compute instance.

Chapter 6 patterns for Compute and networking

285

For development purposes, it seems fine to rely on dynamically assigned and,

to some extent, random public IPv4 addresses. If you consider production systems,

however, you would truly benefit from gaining some more control over the public

IP addresses. To do so, you can use reserved public IPs. Their lifecycle is completely

independent from any other cloud resources. Furthermore, it is possible to attach them

to and detach them from running compute instances. In contrary to an ephemeral

public IP, a reserved public IP can remain unassigned, if you do not need it at a given

point of time. This is how you reserve a new reserved public IP using the OCI Console:

 1. Go to Menu ➤ Networking ➤ Public IPs.

 2. Make sure that the Sandbox compartment is selected.

 3. Click Create Reserved Public IP.

 4. Provide a new display name, for example, my-ip.

 5. Click Create.

From now on, a newly reserved public IP will be ready to be assigned to a compute

instance of your choice.

Figure 6-5. Internet-facing compute instance

Chapter 6 patterns for Compute and networking

286

Note the code snippets from this book have been tested on macos and
windows subsystem for Linux. moreover, all commands should work on major Linux
distributions. if you are using windows and do not want to use windows subsystem
for Linux, you can always run Linux on a Vm. furthermore, the majority of code
snippets may also work in git Bash on windows. remember to set up the CLi and
terraform exactly as described in Chapter 3 and the iam as described in Chapter 4.

As always, you can use the oci network public-ip create CLI command to

perform the same action.

$ oci network public-ip create --lifetime RESERVED --display-name another-

ip --profile SANDBOX-ADMIN

{

 "data": {

 "assigned-entity-id": null,

 "assigned-entity-type": null,

 "availability-domain": null,

 "compartment-id": "ocid1.compartment.oc1..aa.........gzwhsa",

 "defined-tags": {},

 "display-name": "another-ip",

 "freeform-tags": {},

 "id": "ocid1.publicip.oc1.eu-frankfurt-1.aa.........mkawlq",

 "ip-address": "130.61.68.218",

 "lifecycle-state": "AVAILABLE",

 "lifetime": "RESERVED",

 "private-ip-id": null,

 "scope": "REGION",

 "time-created": "2019-04-22T16:50:41.982000+00:00"

 },

 "etag": "34e061ab"

}

Chapter 6 patterns for Compute and networking

287

If you read the previous chapter, you know that we have prepared and are using the

SANDBOX-ADMIN profile to execute the CLI commands as the sandbox-admin user. The

--lifetime RESERVED parameter is used to tell the API that we would like to create a

new reserved public IP. Figure 6-6 presents the two new reserved public IP addresses in

the OCI Console.

Figure 6-6. Viewing reserved public IPs in the OCI Console

To list reserved public IPs using the CLI, you have to use the oci network public-ip

list command like this:

$ oci network public-ip list --lifetime RESERVED --scope REGION --query

'data[*].{IP:"ip-address",Name:"display-name",State:"lifecycle-state"}'

--output table --all --profile SANDBOX-ADMIN

+-----------------+------------+-----------+

| IP | Name | State |

+-----------------+------------+-----------+

| 130.61.68.218 | another-ip | AVAILABLE |

| 132.145.252.222 | my-ip | AVAILABLE |

+-----------------+------------+-----------+

In the preceding example, I have employed the JMESPath filter and tabular output

to increase the clarity of the response. To read more about it, please refer to the previous

chapters.

We are now going to use the CLI to free up the two reserved public IPs because, in

our exercises, we are going to use ephemeral public IPs. You can use the following CLI

commands to terminate each reserved public IP cloud resource:

Chapter 6 patterns for Compute and networking

288

$ RESERVED_IP_NAME="my-ip"

$ QUERY="data[?\"display-name\" == '$RESERVED_IP_NAME'].id | [0]"

$ RESERVED_IP_OCID=`oci network public-ip list --scope REGION --lifetime

RESERVED --query "$QUERY" --all --profile SANDBOX-ADMIN | tr -d '"'`

$ echo $RESERVED_IP_OCID

ocid1.publicip.oc1.eu-frankfurt-1.aa.........6glghq

$ oci network public-ip delete --public-ip-id $RESERVED_IP_OCID --force

--profile SANDBOX-ADMIN

Please adapt the QUERY variable to use another-ip instead of my-ip in the JMESPath

filter and repeat the preceding steps to release the second reserved public IP resources.

Tip use as few reserved public ips as possible and do it mainly for production
purposes. for development and testing, if possible, stick to ephemeral public ips.
this will simplify your infrastructure code.

In addition to compute instances, there are other cloud resource types that can

use public IP addresses including public load balancers and NAT gateways. When you

provision a public load balancer, a new reserved public IP address is automatically

added to your account. You can see it in the OCI Console, in the same way as described

in the previous paragraph. You cannot detach it from the load balancer, however. The

lifecycle is tied to the load balancer, which means that the reserved public IP address

that came together with a newly provisioned public load balancer will be deleted as

soon as the load balancer has been terminated. NAT gateways use ephemeral public IP

addresses. We are going to discuss that type of gateway in the next section.

We’ve mentioned that public subnets allow you to assign public IPs to the compute

instances, while private subnets don’t. This simple rule helps a lot when designing

and governing your cloud infrastructure because you can be sure that all compute

instances attached to private subnets never use public IPs. In this way, one possible

breach path is closed.

Chapter 6 patterns for Compute and networking

289

 Private Subnets, Bastion, and NAT
Private subnets isolate compute instances from the public Internet by design. The fact that

an instance cannot use a public IP makes it, in a certain degree, invisible from the outside

world. Earlier, I mentioned the three basic reasons for an instance to have a public IP.

• It hosts an application that exposes a public web service.

• Its operating system has to download updates or additional software.

• You want to establish an SSH connection to access the Terminal.

As a matter of fact, it is possible to address all three, even if a particular instance is

running without a public IP in an isolated, private subnet. To do so, we are going to apply

the cloud infrastructure pattern that employs a bastion host and a NAT gateway. Let’s

consider two goals for applications hosted on compute instances.

• Running isolated workloads

• Exposing web services

Applications that execute isolated workloads may run periodic batch jobs over

data in object storage or a managed database. Other more exciting examples are

high- performance computing (HCP) tasks such as 3D rendering, fluid dynamics, or

biological simulations. Hosts to which these applications are deployed rarely expose

public web services. Instead, they can be treated as isolated backend systems. Yet,

sometimes, you still want to access this instance over SSH in order to perform some

housekeeping tasks. This becomes a task for a bastion host, a dedicated instance

provisioned in a public subnet that holds a public IP. To access instances in private

subnets, you simply tunnel your SSH connection over the bastion host. The next

aspects are outbound connections from isolated instances. Operating systems and

applications must at least be able to download updates. If no private artifact registry

with proper mirrors is available within your private network, you may need to let these

hosts access public repositories on the Internet. In your VCN, you deploy and redirect

the outbound traffic to a NAT gateway. The gateway’s public IP becomes the source IP

address seen in the Internet for the isolated instances running in private subnets that

send their outbound traffic to the gateway. In addition to the responses associated with

the outbound traffic, a NAT gateway does not let any other inbound traffic enter your

VCN. Simple and secure. Figure 6-7 presents a simplified infrastructure for an isolated

workload use case, as described earlier.

Chapter 6 patterns for Compute and networking

290

It is clear that applications that expose public web services must be reachable from

the public Internet. In their case, you usually deploy a highly available load balancer to

front the Internet and evenly distribute traffic to the application hosts grouped together

in one or more backend sets. In this way, it is possible to place the backend set hosts in

private subnets, reducing unnecessary exposure and public IP address consumption.

To support remote management and access to updates, we rely on the bastion host and

NAT gateway. Figure 6-8 presents this use case, as described earlier.

Figure 6-7. Isolated workload infrastructure

Chapter 6 patterns for Compute and networking

291

We are now going to provision a simplified infrastructure that supports the isolated

workload use case. In a private subnet, we are going to launch a CentOS-based instance

equipped with two OCPUs. This will be our worker node with no Internet identity and

therefore no public IP address. To access the worker node over SSH, we are going to

launch another, less powerful instance in a public subnet. This instance, called a bastion

host, will hold a public IP address that will let us reach it from the Internet. In this way,

we’ll be able to tunnel SSH connections and access the worker node terminal. Finally, a

NAT gateway will allow the worker node to access the Internet. The target infrastructure

is presented in Figure 6-9.

Warning Before doing the hands-on exercises covered in this chapter, you have
to make sure your service limits allow you to launch at least one instance of the
Vm.standard2.2 shape in each ad of the region you are working in. in the oCi
Console, go to menu ➤ governance ➤ Limits, Quotas and usage and search for
VM.Standard2.2. if the limit is set to 0, please click request a service Limit increase,
fill in the form accordingly, and submit the form.

Figure 6-8. Public web services infrastructure

Chapter 6 patterns for Compute and networking

292

The infrastructure code is in a huge part identical to what we have already deployed a

couple of times. You should be familiar with many elements. There are some new things,

though. Go to the chapter06/1-bastion-nat directory. The infrastructure code assumes

the SSH public key is located at the ~/.ssh/oci_id_rsa.pub path. You will also need the

corresponding private key to access the provisioned compute instance remotely. In the

infrastructure subfolder, run the terraform init command to download the newest OCI

plugin and execute the terraform apply command to provision the infrastructure.

$ source ~/tfvars.env.sh

$ cd ~/git

$ cd oci-book/chapter06/1-bastion-nat/infrastructure/

$ find . -name "*.tf"

./modules.tf

./bastion/compute.tf

./bastion/vcn.tf

./bastion/vars.tf

./vcn.tf

./workers/compute.tf

./workers/vcn.tf

Figure 6-9. Isolated worker, bastion host, and NAT gateway

Chapter 6 patterns for Compute and networking

293

./workers/vars.tf

./provider.tf

./vars.tf

$ terraform init

Initializing modules...

- module.bastion

 Getting source "bastion"

- module.workers

 Getting source "workers"

Initializing provider plugins...

- Checking for available provider plugins on https://releases.hashicorp.com...

- Downloading plugin for provider "oci" (3.45.0)...

* provider.oci: version = "~> 3.45"

Terraform has been successfully initialized!

$ terraform apply -auto-approve

Apply complete! Resources: 11 added, 0 changed, 0 destroyed.

Outputs:

bastion_public_ip = 130.61.53.185

worker_public_ip = 10.0.1.130

image_name = CentOS-7-2019.04.15-0

$ BASTION_PUBLIC_IP=`terraform output bastion_public_ip`

Wait until you see the public IP assigned to your newly provisioned bastion host

that has been deployed in a public subnet. This time, in my case, it is 130.61.53.185. You

should now see the two new instances in the OCI Console, as shown in Figure 6-10: one

bastion host instance in a public subnet and one worker node in a private subnet.

Chapter 6 patterns for Compute and networking

294

You may need to wait a couple of seconds until the ssh daemon starts accepting

connections. Let’s connect to the worker node, jumping over the bastion host.

If you are working on Windows either using Windows Subsystem for Linux or using

GitBash, you may need to start the ssh-agent first.

$ eval `ssh-agent -s`

Agent pid 290

Now, you should be ready to establish a connection to the worker node in the private

subnet over the bastion host in a public subnet.

$ ssh-add ~/.ssh/oci_id_rsa

Identity added: /Users/mjk/.ssh/oci_id_rsa

$ ssh -J opc@$BASTION_PUBLIC_IP opc@10.0.1.130

[opc@worker-vm ~]$

To access the worker’s terminal, we have added our private key to the authentication

agent and executed ssh with the -J option to use the SSH ProxyJump technique. To

verify whether the instance in a private subnet is indeed able to access the Internet, we

will try to ping one of the Google’s public DNS servers.

[opc@worker-vm ~]$ ping -c 3 8.8.8.8

PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.

64 bytes from 8.8.8.8: icmp_seq=1 ttl=123 time=24.0 ms

64 bytes from 8.8.8.8: icmp_seq=2 ttl=123 time=0.417 ms

64 bytes from 8.8.8.8: icmp_seq=3 ttl=123 time=0.377 ms

Figure 6-10. Viewing bastion and worker instances in the OCI Console

Chapter 6 patterns for Compute and networking

295

--- 8.8.8.8 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2001ms

rtt min/avg/max/mdev = 0.377/8.294/24.088/11.168 ms

[opc@worker-vm ~]$ exit

$

As you can see, even though the worker instance doesn’t have a public IP, it is both

reachable over SSH via the bastion host and can access the Internet through the NAT

 gateway. It’s time to take a brief look at the most interesting, from this section’s point of

view, resources in the infrastructure code. Listing 6-1 presents the vcn.tf file where we

define the VCN, Internet gateway, and NAT gateway.

Listing 6-1. vcn.tf (Root Module)

resource "oci_core_virtual_network" "vcn" {

 compartment_id = var.compartment_ocid

 cidr_block = var.vcn_cidr

 display_name = "bastionnat-vcn"

 dns_label = "a"

}

resource "oci_core_internet_gateway" "igw" {

 compartment_id = var.compartment_ocid

 vcn_id = oci_core_virtual_network.vcn.id

 display_name = "internet-gateway"

}

resource "oci_core_nat_gateway" "natgw" {

 compartment_id = var.compartment_ocid

 vcn_id = oci_core_virtual_network.vcn.id

 display_name = "nat-gateway"

 block_traffic = false

}

Both types of gateways are created within the VCN. The Internet gateway (igw) effectively

provides both inbound and outbound connectivity to these instances that are attached to

public subnets whose route table contains a route rule that targets the Internet gateway for

non-VCN traffic. The NAT gateway (natgw), in essence, is meant to serve only outbound

traffic from instances in private subnets whose route table contains a route rule that targets

the NAT gateway for non-VCN traffic. These roles are conceptually presented in Figure 6-11.

Chapter 6 patterns for Compute and networking

296

Figure 6-11. Routing rules for Internet and NAT gateways

To follow best practices, we have used modules in our infrastructure code. The

bastion module is responsible for creating a public subnet with a dedicated route table

and security list as well as launching the bastion instance attached to the public subnet.

The workers module creates a private subnet, together with a dedicated route table

and security list, and launches a worker instance that is attached to the private subnet.

Because the routing rules are created within each module, we have to pass the OCID of

both gateways as input variables. Listing 6-2 presents an excerpt from the modules.tf

file that shows how it is done.

Listing 6-2. modules.tf (Root Module)

...

module "bastion" {

 source = "./bastion"

 compartment_ocid = var.compartment_ocid

 vcn_ocid = oci_core_virtual_network.vcn.id

 vcn_igw_ocid = oci_core_internet_gateway.igw.id

 vcn_cidr = oci_core_virtual_network.vcn.cidr_block

 vcn_subnet_cidr = "10.0.1.0/27"

 ads = data.oci_identity_availability_domains.ads.availability_domains[*].name

 image_ocid = data.oci_core_images.centos_image.images[0].id

}

Chapter 6 patterns for Compute and networking

297

module "workers" {

 source = "./workers"

 compartment_ocid = var.compartment_ocid

 vcn_ocid = oci_core_virtual_network.vcn.id

 vcn_nat_ocid = oci_core_nat_gateway.natgw.id

 vcn_cidr = oci_core_virtual_network.vcn.cidr_block

 vcn_subnet_cidr = "10.0.1.128/27"

 ads = data.oci_identity_availability_domains.ads.availability_domains[*].name

 image_ocid = data.oci_core_images.centos_image.images[0].id

}

...

The variable that carries the OCID of the Internet gateway into the bastion module

is, in my case, called vcn_igw_ocid. You learned in Chapter 3 that the module input

variable names are arbitrary. You just need to make sure you are referencing them

properly within the module. If you look at the bastion/vcn.tf file, you will see that

the OCID of the Internet gateway becomes a target for all non-VCN traffic. Listing 6-3

presents the relevant part of the bastion/vcn.tf file.

Listing 6-3. vcn.tf (Bastion Module)

resource "oci_core_route_table" "bastion_rt" {

 compartment_id = var.compartment_ocid

 vcn_id = var.vcn_ocid

 route_rules {

 network_entity_id = var.vcn_igw_ocid

 destination_type = "CIDR_BLOCK"

 destination = "0.0.0.0/0"

 }

 display_name = "bastion-rt"

}

Similarly, we are using the vcn_nat_ocid variable to pass the OCID of the NAT

gateway, this time into the workers module. Listing 6-4 shows the definition of the route

table used by the private subnet to which the worker node is attached.

Chapter 6 patterns for Compute and networking

298

Listing 6-4. vcn.tf (Workers Module)

resource "oci_core_route_table" "workers_rt" {

 compartment_id = var.compartment_ocid

 vcn_id = var.vcn_ocid

 route_rules {

 network_entity_id = var.vcn_nat_ocid

 destination_type = "CIDR_BLOCK"

 destination = "0.0.0.0/0"

 }

 display_name = "workers-rt"

}

If you ever need to temporarily block the outbound traffic from your private

instances to the public Internet, you can do this using just one simple switch. NAT

gateways can be set to block traffic. To test this feature, go to the vcn.tf file in the root

module and set the block_traffic attribute to true, as shown in Listing 6-5.

Listing 6-5. vcn.tf (Root Module)

...

resource "oci_core_nat_gateway" "natgw" {

 compartment_id = var.compartment_ocid

 vcn_id = oci_core_virtual_network.vcn.id

 display_name = "nat-gateway"

 block_traffic = true

}

As soon as you apply changes, Terraform will detect that the expected state represented

by your .tf files is different from what it finds in the refreshed state file. The calculated

plan will perform the relevant API call(s) to set the NAT gateway to block the traffic.

$ terraform apply -auto-approve

...

oci_core_nat_gateway.natgw: Modifying... (ID: ocid1.natgateway.oc1.eu-

frankfurt- 1.........6n76gq)

 block_traffic: "false" => "true"

oci_core_nat_gateway.natgw: Modifications complete after 0s

Chapter 6 patterns for Compute and networking

299

Apply complete! Resources: 0 added, 1 changed, 0 destroyed.

Outputs:

bastion_public_ip = 130.61.53.185

worker_public_ip = 10.0.1.130

image_name = CentOS-7-2019.04.15-0

You can now verify in the OCI Console that the NAT gateway has been effectively

disabled. To do so, follow these steps:

 1. Go to Menu ➤ Networking ➤ Virtual Cloud Networks.

 2. Make sure that the Sandbox compartment is selected.

 3. Click the VCN name (bastionnat-vcn).

 4. In the Resources section, click NAT Gateways.

You should see the NAT gateway grayed out with its status set to blocking traffic, as

shown in Figure 6-12. The public IP you see for the NAT gateway is an ephemeral public IP.

Figure 6-12. Viewing how to disable NAT gateway in the OCI Console

This time, you should not be able to ping the Google public DNS server. Let’s test it.

Connect to the worker instance using SSH over the bastion host and issue the ping

command.

$ ssh -J opc@$BASTION_PUBLIC_IP opc@10.0.1.130

...

[opc@worker-vm ~]$ ping -c 5 8.8.8.8

PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.

--- 8.8.8.8 ping statistics ---

5 packets transmitted, 0 received, 100% packet loss, time 3999ms

[opc@worker-vm ~]$ exit

$

Chapter 6 patterns for Compute and networking

300

This concludes the hands-on exercise with a bastion host and NAT gateway. You can

now terminate the infrastructure.

$ terraform destroy -auto-approve

...

Destroy complete! Resources: 11 destroyed.

In addition to the two route rules we have created for each subnet, there are also

dedicated security lists. This will be the last element we are going to discuss based on the

infrastructure code you’ve just terminated.

 Security Rules
Security rules provide an additional layer of a virtual firewall that protects compute

instances by explicitly allowing the traffic they describe. Virtual cloud networks follow

the deny-all principle by default; therefore, to let different kinds of specialized traffic

pass through, proper security rules must be put in place. Security lists and rules were

already briefly introduced at the beginning, back in Chapter 2. In the course of this

book, you used them every time you deployed and tested the cloud infrastructure

with compute instances. You already know that every subnet must have at least one

associated security list, which is a collection of security rules. Security rules always define

what is allowed, so to deny a particular type of traffic, you just need to make sure there

are no rules that allow it. The rules are enforced before packets reach the compute

instance. Security rules are categorized based on their direction as ingress (inbound)

and egress (outbound). Security rule statelessness impacts how response traffic is

handled. For a stateful rule, if outbound traffic is allowed based on an egress rule, the

corresponding response packets are automatically allowed. In the case of a stateless

rule, we still need an explicit stateless rule in the opposite direction, as conceptually

illustrated in Figure 6-13.

Chapter 6 patterns for Compute and networking

301

It is no surprise that Oracle Cloud has to track the connections allowed by stateful

rules to be able to automatically permit the corresponding responses. This comes at a

cost of a slight increase in latency. Furthermore, every type of instance shape has a limit

for the allowed number of tracked connections.

Tip use stateless rules whenever possible to avoid the connection tracking
performance penalty that occurs for the stateful rules and avoid hitting. in this way,
you will avoid hitting the limit on the number of tracked connections.

If there are two security rules, one stateless and one stateful, that overlap for some

particular traffic, the stateless rule takes priority, and you must make sure that there is a

corresponding stateless rule that will allow related response traffic.

Listing 6-6 presents the definition of a security list element from the bastion/vcn.tf file.

Listing 6-6. vcn.tf (Bastion Module)

...

resource "oci_core_security_list" "bastion_sl" {

 compartment_id = var.compartment_ocid

 vcn_id = var.vcn_ocid

 egress_security_rules {

Figure 6-13. Stateless and stateful security rules

Chapter 6 patterns for Compute and networking

302

 stateless=true

 destination=var.vcn_cidr

 protocol="all"

 }

 egress_security_rules {

 stateless=false

 destination="0.0.0.0/0"

 protocol="all"

 }

 ingress_security_rules {

 stateless=true

 source=var.vcn_cidr

 protocol="all"

 }

 ingress_security_rules {

 stateless=false

 source="0.0.0.0/0"

 protocol="6"

 tcp_options {

 min=22

 max=22

 }

 }

 display_name = "bastion-sl"

}

...

The bastion_sl security list contains one stateless (stateless=true) ingress rule

that allows the entire (protocol = "all") incoming traffic from instances in the same

VCN (source=var.vcn_cidr) to which the subnet belongs and one stateless egress rule

that, similarly, accepts the entire outgoing traffic to the instances attached to any subnet

in the same VCN (destination=var.vcn_cidr) to which the bastion public subnet

belongs. The resulting rules are shown in Figure 6-14.

Chapter 6 patterns for Compute and networking

303

To allow two-way communication initiated by the incoming SSH

connections (protocol="6" tcp_options { min=22 max=22 }) from any host

(source="0.0.0.0/0"), the security list contains one stateful (stateless=false) ingress

rule. Finally, the bastion host alone benefits from a stateful egress rule that allows any

kind (protocol = "all") of two-way packet exchange initiated by the outbound traffic

sent to any host (destination="0.0.0.0/0") and coming from the public subnet the

instance is attached to. The resulting rules are shown in Figure 6-15.

Figure 6-14. Intra-VCN traffic stateless rules for the bastion subnet

Figure 6-15. Stateful rules for the bastion subnet

Chapter 6 patterns for Compute and networking

304

 VCN Peering
Working with multiple production systems usually results in a number of separate

compartments where the cloud resources for these production systems reside. The VCN

cloud resource cannot span multiple compartments but must be created inside one

particular compartment. If each production system is managed within its own dedicated

compartment, you will end up having at least one VCN per system. Sooner or later,

you are going to face the challenge of connecting to some of these systems, based on

business requirements. For systems running in the same cloud region, you will use the

local VCN peering to connect to the chosen VCNs and let the instances communicate

using their private addresses within Oracle Cloud, as presented in Figure 6-16.

Figure 6-16. Local VCN peering

An important requirement that has to be considered already during the early

planning stage is the fact that two connected VCNs must not use overlapping IP address

ranges. If they did, routing would fail. To set up local VCN peering, you need to do the

following:

• Create local peering gateways (LPG) in both VCNs.

• Establish a connection between LPGs.

• Adapt routing tables by adding new rules that direct traffic intended

for the other VCN to LPGs.

• Make sure the security rules allow traffic to and from the other VCN.

Chapter 6 patterns for Compute and networking

305

A local peering gateway is just an ordinary cloud resource that is created within the

VCN just like the Internet gateway or NAT gateway you’ve already worked with. If your

user is entitled to manage both VCNs, creating a connection is pretty straightforward.

You just need to point to the other LPG and the peering status should indicate a

successful connection, as shown in Figure 6-17.

Figure 6-17. Connected local peering gateway

When dealing with production systems, however, there is some chance that the other

VCN is managed by someone else. In such a case, you need to agree on who is going to

initiate the connection. If the admin users do not have full management access to their

own compartments, you have to make sure that the requestor belongs to a group that

holds the manage local-peering-from rights. The acceptor belongs to a group that

holds the managed local-peering-to rights. Both IAM policy resource types (local-

peering-from and local-peering-to) belong to the virtual-network-family. To learn

more about IAM policies, please refer to Chapter 4.

As soon as the LPGs have been successfully connected, the VCN peering is in place.

Now, you have to adapt the routing tables in both VCNs. Basically, new route rules

that direct the traffic intended for the other VCN must be added on both sides. The

target network entity is the LPG, as shown in Figure 6-18, where the other VCN uses the

10.6.0.0/16 address range.

Figure 6-18. Route rules for local VCN peering

Chapter 6 patterns for Compute and networking

306

The last elements to add are the security rules. There is no exception here. Just like

you would add new security rules for different subnets in the same VCN, you have to do

the same for the subnets from the peered VCN. Please consider using stateless rules to

avoid unnecessary connection tracking related to stateful rules.

VCN peering is a point-to-point connection. Any given VCN can be locally peered

with up to ten other VCNs. In other words, you can have up to ten LPGs per VCN where

each LPG represents one peered VCN, as shown in Figure 6-19. It does not sound very

scalable, does it? Another important characteristic of peering to remember is the fact

that instances in one VCN cannot use the Internet gateway in the peered VCN to access

the Internet.

Figure 6-19. One LPG per one peered VCN

In the case of a complex application landscape, you may either end up with a hard-

to- manage local peering VCN spaghetti or hit the maximum limit of local peering

connections. To alleviate these problems, there are two alternative architectures to

consider.

• Using a dedicated compartment just for cloud networking

• Using a messaging platform as a service

Figure 6-20 presents a high-level sketch of an architecture in which there is a

dedicated networking compartment with one large VCN that contains multiple subnets.

Each subnet is dedicated to one production system. Production system instances are

launched in their own compartments but, at the same time, are attached to subnets from

the VCN in the networking compartment. This setup completely eliminates the need for

local VCN peering, but this benefit may come at a cost of more complex IAM policies,

especially if there are different compartment admin groups in place.

Chapter 6 patterns for Compute and networking

307

Another recommended way to go in the case of complex application landscapes

that involve multiple production systems is to use a messaging platform as a service.

Production systems send their messages to a messaging cluster that under the hood

consists of multiple message brokers. If you choose a managed service, you won’t

need to worry about cluster management. To find out more, explore Oracle Cloud

Infrastructure Streaming to see if it fits your purpose.

Until now, we discussed local VCN peering that assumed all connected VCNs

are located in the same cloud region. To connect VCNs that reside in two different

Oracle Cloud regions, you will employ remote VCN peering. This technique is to some

extent similar but involves another type of cloud resource called a dynamic routing

gateway (DRG). In rare cases, you might even want to connect to a VCN that resides in

a different tenancy. Cross-tenancy VCN peering is also possible and requires granting

additional IAM policies in both tenancies. You can find more information in the official

 documentation.

Up to that point, we focused on networking. We discussed cloud resources related

to IP addresses, applied bastion host and NAT gateway patterns to allow private workers

to securely communicate with the Internet, explained the types of security rules, and

explored selected interconnectivity matters. Now, we will look closer at the aspects

related to compute instances.

Figure 6-20. Architecture based on a dedicated network compartment

Chapter 6 patterns for Compute and networking

308

 Scaling Instances
Elasticity is one of the cloud computing principles mentioned in Chapter 1. We said

there that elasticity can be achieved through the scalability of the underlying resources.

We also defined horizontal scaling as adding (or removing) cluster instances of the same

kind to increase (or decrease) the overall cluster processing capacity. Adding more

instances is often referred as scaling out, while removing instances from a cluster is

referred to as scaling in. Similarly, we defined vertical scaling as making a single instance

more (or less) powerful by upsizing (or downsizing) its hardware configuration. Adding

more hardware resources is traditionally referred to as scaling up, while using less

powerful resources is called scaling down. All terms are illustrated in Figure 6-21.

Figure 6-21. Horizontal and vertical scaling

In this section, we are going to discuss both types of scaling, first horizontal and then

vertical.

 Instance Pools and Autoscale
Horizontal scaling is typically performed against groups of homogeneous instances.

Each of these instances uses the same hardware profile and base software stack.

Furthermore, in the case of clustered applications whose members cooperate, the

instance initialization logic should tell each member how to find others and establish

the correct connections. To be able to rapidly scale out by launching new instances, we

need some kind of instance template, something more than just a custom image you

worked with in Chapter 2. This kind of instance template understood as a combination

of hardware profile (shape), base software stack (image), and initialization logic (cloud-

config for cloud-init) accompanied with some basic networking details is called an

instance configuration. The instances provisioned based on an instance configuration

Chapter 6 patterns for Compute and networking

309

are grouped into an instance pool. You can then set the expected number of instances

for a particular pool and observe how the pool is scaled out (or in) by launching new (or

terminating existing) instances. As time goes by, you can dynamically adjust the instance

count so that the expected cluster processing capability is delivered. A single instance

configuration can be used to provision multiple instance pools. You create instance

configurations based on existing compute instances or, totally from scratch, using

the API, usually through Terraform or the CLI. The relationship between an instance

configuration and an instance pool is illustrated in Figure 6-22.

Figure 6-22. Instance pool and instance configuration

We are going to look closer at the way an instance pool works by provisioning a

complete set of cloud resources. The pool will consist of instances launched in a private

subnet and based on a custom instance configuration. To provide the isolated instances

with proper connectivity to the Internet, we are going to employ the familiar pattern

that relies on a bastion host and NAT gateway. The instance configuration will use the

newest CentOS image, a simple cloud-init configuration that installs and executes

a stress testing utility called stress-ng, the SSH public key, as well as some basic

hardware profile info such as shape and VNIC details. Figure 6-23 presents the expected

infrastructure for our exercise.

Chapter 6 patterns for Compute and networking

310

This time, we will be working with code from the chapter06/2-instance-pool-

autoscale directory. As always, I am assuming all environment variables required by

Terraform and described in Chapter 3 are present. The same applies the public SSH

key that should be located at the ~/.ssh/oci_id_rsa.pub path. Let’s provision the

infrastructure.

$ cd ~/git

$ cd oci-book/chapter06/2-instance-pool-autoscale/infrastructure

$ find . \(-name "*.tf" -o -name "*.yaml" \)

./modules.tf

./bastion/compute.tf

./bastion/vcn.tf

./bastion/vars.tf

./vcn.tf

./workers/compute.tf

./workers/vcn.tf

./workers/cloud-init/worker.config.yaml

./workers/vars.tf

./provider.tf

./vars.tf

Figure 6-23. Isolated instance pool infrastructure

Chapter 6 patterns for Compute and networking

311

$ terraform init

Initializing modules...

- module.bastion

 Getting source "bastion"

- module.workers

 Getting source "workers"

Initializing provider plugins...

- Checking for available provider plugins on https://releases.hashicorp.com...

- Downloading plugin for provider "oci" (3.30.0)...

* provider.oci: version = "~> 3.30"

Terraform has been successfully initialized!

$ terraform apply -auto-approve

Apply complete! Resources: 13 added, 0 changed, 0 destroyed.

Outputs:

bastion_public_ip = 130.61.122.251

image_name = CentOS-7-2019.04.15-0

$ BASTION_PUBLIC_IP=`terraform output bastion_public_ip`

Before we connect to the worker node over the bastion host, let’s see some of the

newly provisioned cloud resources in the OCI Console.

 1. Go to Menu ➤ Compute ➤ Instance Pools.

 2. Make sure that the Sandbox compartment is selected.

You should see a new instance pool called workers-pool, as shown in Figure 6-24.

The pool’s placement configuration includes all three availability domains (ADs) in my

default region (eu-frankurt-1). Whenever a new instance is added to the pool, it will be

created in one of these ADs. If you look at Target Instance Count, you will see that, in our

case, we started small by having only one target instance.

Chapter 6 patterns for Compute and networking

312

To find out more about the instance that is a member of the pool, follow these steps:

 1. Click the name of the instance pool.

 2. In the Resources section, make sure Created Instance is selected.

You should now see something similar to what is shown in Figure 6-25. This time, the

worker instance landed in AD-1.

Figure 6-24. Viewing an instance pool in the OCI Console

Figure 6-25. Viewing the instance pool member in the OCI Console

Let’s inspect the instance in more detail. We are now going to find out the private IP

assigned to the instance as well as monitor its current load. To do so, follow these steps:

 1. Click the name of the instance.

 2. Read the Private IP Address setting from the Primary VNIC

Information section on the Instance Information tab of the

Instance Details view. In my case, it is 10.1.2.2.

 3. In the Resources section, make sure Metrics is selected.

 4. Click the plot area of the CPU Utilization widget.

A new embedded window should appear in which you adjust the x-axis at the bottom

to increase the readability of the plot even further. This is presented in Figure 6-26.

Chapter 6 patterns for Compute and networking

313

As you can see, the CPU consumption decreases from around 40 percent to 20 percent

after the processes related to the initial boot have been completed. Why is an idle machine

consuming 20 percent of the CPU? Is it actually idle? To see the reason, let’s connect to

the worker node. Of course, we have to rely on the bastion host because the worker node

doesn’t even have a public IP address.

$ ssh -J opc@$BASTION_PUBLIC_IP opc@10.1.2.2

[opc@inst-pu327-workers-pool ~]$ ps -axf -o %cpu,pid,command

%CPU PID COMMAND

...

0.0 13531 /usr/bin/python /usr/bin/cloud-init modules -mode=final

 0.0 13776 _ /bin/sh /var/lib/cloud/instance/scripts/runcmd

 0.0 13780 _ stress-ng -c 0 -l 20

19.9 13785 _ stress-ng -c 0 -l 20

20.0 13786 _ stress-ng -c 0 -l 20

19.9 13787 _ stress-ng -c 0 -l 20

19.9 13788 _ stress-ng -c 0 -l 20

Figure 6-26. Viewing instance CPU utilization in the OCI Console

Chapter 6 patterns for Compute and networking

314

Mystery solved. As part of the final stage of cloud-init, we have intentionally executed

the stress-ng utility to simulate CPU load on the instance. The stress-ng utility has

been executed in a way to create a 20 percent overall CPU load on each vCPU. Because

we have used the VM.Standard2.2 shape that ships with two OCPUs, the operating

systems sees four vCPUs in total. As a result, the stress-ng forked four processes, each

consuming 20 percent of a particular vCPU processing capacity. Listing 6-7 presents the

cloud-config file referenced by the instance configuration that served as the template for

the instances in the instance pool we’ve just provisioned.

Listing 6-7. worker.config.yaml (Workers Module)

#cloud-config

packages:

 - stress-ng

runcmd:

 - [stress-ng, -c, 0, -l, 20]

Let’s take a look at the infrastructure code and go through the new resources you

haven’t had an opportunity to see until now. Listing 6-8 shows the first part of the

workers/compute.tf file and covers the instance configuration resource.

Listing 6-8. compute.tf (Workers Module): Instance Configuration

...

resource "oci_core_instance_configuration" "worker_config" {

 compartment_id = var.compartment_ocid

 instance_details {

 instance_type = "compute"

 launch_details {

 compartment_id = var.compartment_ocid

 create_vnic_details {

 assign_public_ip = false

 }

 metadata = {

 ssh_authorized_keys = file("~/.ssh/oci_id_rsa.pub")

 user_data = base64encode(file("workers/cloud-init/worker.config.yaml"))

 }

Chapter 6 patterns for Compute and networking

315

 shape = "VM.Standard2.2"

 source_details {

 source_type = "image"

 image_id = var.image_ocid

 }

 }

 }

 display_name = "instance-config"

}

...

The oci_core_instance_configuration resource defines an instance configuration

that, as we mentioned earlier, is a template applied by an instance pool while launching

new instances. The most important details are defined in the launch_details object. As

a matter of fact, their definition is similar to the oci_core_instance resource, which is

the standard compute instance Terraform resource. The resulting instance configuration

can be seen in the OCI Console, as shown in Figure 6-27.

Figure 6-27. Viewing instance configuration details in the OCI Console

Chapter 6 patterns for Compute and networking

316

Listing 6-9 shows the second part of the workers/compute.tf file and covers the

instance pool resource.

Listing 6-9. compute.tf (Workers Module): Instance Pool

...

resource "oci_core_instance_pool" "worker_pool" {

 compartment_id = var.compartment_ocid

 instance_configuration_id = oci_core_instance_configuration.worker_

config.id

 placement_configurations {

 availability_domain = var.ads[0]

 primary_subnet_id = oci_core_subnet.workers_net.id

 }

 placement_configurations {

 availability_domain = var.ads[1]

 primary_subnet_id = oci_core_subnet.workers_net.id

 }

 placement_configurations {

 availability_domain = var.ads[2]

 primary_subnet_id = oci_core_subnet.workers_net.id

 }

 size = var.pool_target_size

 display_name = "workers-pool"

}

...

The oci_core_instance_pool resource defines an instance pool. The instance_

configuration_id argument takes the OCID of an instance configuration, and the size

argument is used to define the initial count of instances created in the pool based on

that instance configuration. Other interesting parts are the placement_configurations

embedded blocks. Their elements specify where an instance pool should launch its

instances. In our case, I am using a single regional subnet defined in the workers module

and instruct the instance pool to use all three availability domains while provisioning

any subsequent instances. The initial size of the instance pool is set with a module input

variable. Listing 6-10 presents a small part of the modules.tf file where, among many

different input parameters, you can see the value for the initial instance pool size.

Chapter 6 patterns for Compute and networking

317

Listing 6-10. modules.tf (Root Module)

...

module "workers" {

 source = "./workers"

 compartment_ocid = var.compartment_ocid

 vcn_ocid = oci_core_virtual_network.vcn.id

 vcn_nat_ocid = oci_core_nat_gateway.natgw.id

 vcn_cidr = oci_core_virtual_network.vcn.cidr_block

 vcn_subnet_cidr = "10.1.2.0/24"

 ads = data.oci_identity_availability_domains.ads.availability_domains[*].

name

 image_ocid = data.oci_core_images.centos_image.images[0].id

 pool_target_size = 1

}

...

We are now going to explore the autoscaling capability of the instance pool we are

working with. First, we are going to add much more CPU load on our worker node to

simulate a heavy processing batch or a considerable peak of incoming requests. While

still connected to the worker node, launch another stress-ng process.

[opc@inst-pu327-workers-pool ~]$ nohup stress-ng -c 0 -l 80 &

[1] 10834

[opc@inst-pu327-workers-pool ~]$ ps -axf -o %cpu,pid,command

%CPU PID COMMAND

...

 0.0 5598 /usr/sbin/sshd -D

 0.1 10769 _ sshd: opc [priv]

 0.0 10772 _ sshd: opc@pts/1

 0.0 10773 _ -bash

 0.0 10834 _ stress-ng -c 0 -l 80

71.5 10835 | _ stress-ng -c 0 -l 80

71.0 10836 | _ stress-ng -c 0 -l 80

71.0 10837 | _ stress-ng -c 0 -l 80

71.1 10838 | _ stress-ng -c 0 -l 80

 0.0 10849 _ ps -axf -o %cpu,pid,command

Chapter 6 patterns for Compute and networking

318

 0.0 13531 /usr/bin/python /usr/bin/cloud-init modules --mode=final

 0.0 13776 _ /bin/sh /var/lib/cloud/instance/scripts/runcmd

 0.0 13780 _ stress-ng -c 0 -l 20

19.9 13785 _ stress-ng -c 0 -l 20

19.9 13786 _ stress-ng -c 0 -l 20

19.9 13787 _ stress-ng -c 0 -l 20

19.9 13788 _ stress-ng -c 0 -l 20

...

[opc@inst-pu327-workers-pool ~]$ exit

To add some more CPU load, we launched a new stress-ng process instance. The

preceding nohup command was used to let the stress-ng process continue even if

we disconnect from the machine. After two or three minutes, the CPU utilization for

the instance will report a large increase in load, as shown in Figure 6-28. Very good.

Everything goes as expected.

In the meantime, we will look at the third part of the compute.tf file in the workers

module, namely, the autoscaling configuration resource. The code is shown in Listing 6-11.

Listing 6-11. compute.tf (Workers Module): Autoscaling Configuration

...

resource "oci_autoscaling_auto_scaling_configuration" "workers_pool_

autoscale" {

Figure 6-28. Viewing increased CPU utilization in the instance’s Metrics window

Chapter 6 patterns for Compute and networking

319

 compartment_id = var.compartment_ocid

 auto_scaling_resources {

 id = oci_core_instance_pool.worker_pool.id

 type = "instancePool"

 }

 cool_down_in_seconds = 300

 policies {

 capacity {

 initial = var.pool_target_size

 max = 3

 min = 1

 }

 policy_type = "threshold"

 rules {

 action {

 type = "CHANGE_COUNT_BY"

 value = 1

 }

 metric {

 metric_type = "CPU_UTILIZATION"

 threshold {

 operator = "GT"

 value = "70"

 }

 }

 display_name = "scale-out"

 }

 rules {

 action {

 type = "CHANGE_COUNT_BY"

 value = -1

 }

 metric {

 metric_type = "CPU_UTILIZATION"

 threshold {

 operator = "LT"

Chapter 6 patterns for Compute and networking

320

 value = "30"

 }

 }

 display_name = "scale-in"

 }

 display_name = "workers-pool-autoscale-policy"

 }

 display_name = "workers-pool-autoscale"

}

The oci_autoscaling_auto_scaling_configuration resource creates a new

autoscaling configuration and, at the same time, connects it to the instance pool.

Autoscaling adds some basic autonomous capabilities to an instance pool. You set the

criteria that define how an instance pool should react to changing conditions such as

increased (or decreased) processing load on instances that are instance pool members.

You could, for example, say that one new instance should be added to the pool whenever

the average instance pool CPU utilization performance metric exceeds 70 percent.

In an analogous way, one instance could be automatically taken down if the average

CPU utilization is lower than another threshold. The infrastructure code includes one

autoscaling policy with two rules. Both treat average instance pool CPU utilization as its

metric that drives autoscaling events. The first rule will cause the instance pool to scale

out by adding one instance if the average CPU utilization is greater than 70 percent. The

second rule will order the instance pool to scale in by terminating one instance if the

average CPU utilization falls below 30 percent. The policy is additionally responsible

for defining the minimum and maximum number of instances. In our case, they were

fixed to 1 and 3. The initial number of instances is set using the same module input

variable (pool_target_size) we used for the size of the instance pool. You can view the

autoscaling policy in the OCI Console. To do so, perform the following:

 1. Go to Menu ➤ Compute ➤ Instance Pools.

 2. Make sure that the Sandbox compartment is selected.

 3. Click the name of the instance pool.

 4. Click the link next to the Autoscaling Configuration label of the

Instance Pool Information tab of the Instance Pool Details view.

 5. Expand the policy.

Chapter 6 patterns for Compute and networking

321

Figure 6-29 presents the autoscaling policy in a more human-friendly format than

the one used in the Terraform infrastructure code.

Figure 6-29. Viewing the autoscaling policy in the OCI Console

To avoid all too often and intermittent changes in the instance pool, the cooldown

period was set to 300 seconds. You can find this value in infrastructure code as the

cool_down_in_seconds parameter in Listing 6-11. The cooldown period begins when

the instance pool enters a steady state. It happens for the first time during the initial

 provisioning of the pool. From that point of time, on regular intervals defined by the

cooldown, the autoscaling engine checks the last three metric probes. By default, the

metric probes are collected from the compute instances once a minute. Based on the

probes, the instance pool calculates an average metric for a given timestamp. If another

average value, this time for the last three consecutive instance pool averages, exceeds

a particular autoscaling policy threshold, the autoscaling event is triggered, and the

instance pool size is adjusted. At this stage, we can observe it for our pool as well.

Thanks to the stress-ng utility, we caused a 90 percent CPU load on the only

instance pool member we had that time. Probably a few minutes have passed since that

moment. Let’s see if anything changed while you were reading. If you are lucky, you

might still observe how the instance pool is being scaled out. The OCI Console views

would show something like what was collected in Figure 6-30.

Chapter 6 patterns for Compute and networking

322

The second instance was created in a different availability domain than the first

instance. This time, to see the monitoring metrics from multiple instances on one

diagram, we are going to leverage the OCI Monitoring Service Metrics. To do so, perform

the following in the OCI Console:

 1. Go to Menu ➤ Monitoring ➤ Service Metrics.

 2. Make sure that the Sandbox compartment is selected.

 3. Click the plot area of the CPU Utilization widget.

 4. Make sure the interval is set to 1 minute.

 5. Adjust the x-axis, if needed.

At some point in time, displayed in your chart, you should observe a rapid increase

in the CPU utilization of our compute instance. You saw this earlier in the “Metrics”

section of the individual instance. As the cooldown period of five minutes has elapsed,

the autoscaling engine evaluated the average of the last three CPU utilization metric

probes aggregated from the entire instance pool, which that time contained only one

instance. Because it was spotted that the 70 percent threshold was exceeded, a new

compute instance was added to the pool. This is shown in Figure 6-31.

Figure 6-30. Viewing in the OCI Console how an instance pool is scaling out

Chapter 6 patterns for Compute and networking

323

Because the new instance uses the same instance configuration as the first instance,

both will be based on the same shape, base image, and cloud-config. Having the same

cloud- config file, the cloud-init on the newly added instance will launch the stress-ng

utility and causes 20 percent of the CPU load. From now on, the average instance pool

CPU utilization will be calculated considering the probes from two instances.

At the time of writing, the autoscaling configuration policy rules in Oracle Cloud

Infrastructure support only two types of metrics.

• CPU utilization

• Memory utilization

An interesting question refers to the lifecycle of an instance pool. Over time,

especially for long-running instances, you may face the need to update the instance

configuration that is used for a particular instance pool. The OCI Console seems not

to support this operation at the moment, but the API does. To upgrade the instance

configuration used by your instance pool, you just need to create the new instance

Figure 6-31. Cooldown periods, thresholds, and autoscaling

Chapter 6 patterns for Compute and networking

324

configuration, for example, through your Terraform infrastructure code, and properly

update the instance pool. With Terraform, you would simply use the OCID of the new

instance configuration as the value for the instance_configuration_id parameter

of the instance pool resource and apply the changes. This snippet shows this part

of the Terraform output that shows the upgrade operation is, in this case, indeed

nondestructive.

An execution plan has been generated and is shown in the following.

Resource actions are indicated with the following symbols:

 ~ update in-place

Terraform will perform the following actions:

 ~ module.workers.oci_core_instance_pool.worker_pool

 instance_configuration_id: "ocid1.instanceconfiguration.oc1.eu-

frankfurt-1.aa.........meuzhq" => "ocid1.instanceconfiguration.oc1.eu-

frankfurt- 1.aa.........ijrpuq"

Plan: 0 to add, 1 to change, 0 to destroy.

Do you want to perform these actions?

 Terraform will perform the actions described earlier.

 Only "yes" will be accepted to approve.

 Enter a value: yes

Apply complete! Resources: 0 added, 1 changed, 0 destroyed.

After the successful update, new instances added to the pool will be created

based on the new instance configuration, as shown in Figure 6-32. Already existing

instances won’t be impacted. You can always terminate them manually to let the

instance pool engine provision their replacements, this time using the newest instance

configuration.

Chapter 6 patterns for Compute and networking

325

Another useful fact to mention about instance pools is their first-class capability to

support load balancers. If there is a load balancer associated with a particular instance

pool, an instance launched within the pool gets added to the backend set of the load

balancer. You used a public load balancer with stand-alone instances in Chapter 2.

We are done with horizontal scaling. In the next section, we will discuss vertical

scaling. Before moving on, do not forget to terminate the cloud infrastructure created in

this section. To do so, make sure you are in the chapter06/2-instance-pool- autoscale

directory and execute the following:

$ terraform destroy -auto-approve

Figure 6-32. Viewing the instance pool with the updated instance configuration

Chapter 6 patterns for Compute and networking

326

 Scaling Instance Vertically Up
In the previous section, we discussed and practically tested horizontal scaling on Oracle

Cloud Infrastructure compute instances. To simplify the exercise, we focused on trivial

tests with no real business software deployed on these instances. Things usually get

more complicated as soon as you consider the application layer. Not every application,

especially a legacy one, supports horizontal scaling pattern, though. To do so, systems

will usually need to properly handle clustering, multinode distribution, replication, and

synchronization, which is not as straightforward as you may think. In the past, a lot of

systems were designed in a monolithic way. Some of them provided only active-passive

high availability in which only one node could be active at a given moment, while the

other waited as a standby. To increase the processing and storage capacity of that kind

of systems, more hardware resources were added to existing servers, instead of adding

new nodes. If you are adding more memory, storage, or CPU cores to an existing server,

you are effectively scaling it (vertically) up. In this way, an application receives a more

powerful host and, at least in theory, should be able to process more parallel threads

even faster, as illustrated in Figure 6-33.

We are now going to launch a single compute instance with one OCPU, which

actually provides the instance with two vCPUs. The cloud-config results in the creation

of a new systemd service, which simulates two-core CPU utilization at 60 percent both.

We will apply the same stress-ng utility we used for horizontal scaling tests. Finally,

we are going to scale the machine up by upgrading its shape selection. As a result, the

instance should see two OCPUs that effectively map to four vCPUs. Adding more CPU

cores, for multithreaded applications running on the instance, would let them benefit

from the increased processing capacity. In our case, after having doubled the number

of cores, the overall average CPU utilization should fall from 60 percent to 30 percent,

as illustrated in Figure 6-33.

Figure 6-33. Scaling an instance vertically

Chapter 6 patterns for Compute and networking

327

The service that simulates a two-core CPU utilization at 60 percent is added by

cloud-init based on the supplied cloud-config file, as shown in Listing 6-12.

Listing 6-12. vm.config.yaml (Root Module)

#cloud-config

packages:

 - stress-ng

write_files:

- content: |

 [Unit]

 Description = Simulate CPU Utilization

 [Service]

 ExecStart = /usr/bin/stress-ng -c 2 -l 60

 User = opc

 [Install]

 WantedBy = multi-user.target

 path: /etc/systemd/system/stress.service

runcmd:

 - 'echo $(date) | tee /home/opc/datemarker'

 - ["ln", "-s", "/etc/systemd/system/stress.service", "/etc/systemd/

system/multi-user.target.wants/stress.service"]

 - ["systemctl", "enable", "stress.service"]

 - ["systemctl", "start", "stress.service"]

The code available for this exercise is located in the chapter06/3-instance-

scale-up directory. Again, before proceeding, make sure that all environment variables

required by Terraform are set as needed. Furthermore, a public SSH key, as before, must

be named oci_id_rsa.pub and located in the ~/.ssh directory. Let’s begin and see the

instance in action.

$ cd ~/git

$ cd oci-book/chapter06/3-instance-scale-up/infrastructure

$ find . \(-name "*.tf" -o -name "*.yaml" \)

./compute.tf

./vcn.tf

./data.tf

Chapter 6 patterns for Compute and networking

328

./provider.tf

./cloud-init/vm.config.yaml

./vars.tf

$ terraform init

Initializing provider plugins...

- Checking for available provider plugins on https://releases.hashicorp.

com...

- Downloading plugin for provider "oci" (3.30.0)...

* provider.oci: version = "~> 3.30"

Terraform has been successfully initialized!

$ terraform apply -auto-approve

Apply complete! Resources: 6 added, 0 changed, 0 destroyed.

Outputs:

image_name = CentOS-7-2019.04.15-0

vm_public_ip = 130.61.48.49

$ INSTANCE_PUBLIC_IP=`terraform output vm_public_ip`

At the time of writing, monitoring agents on compute instances send collected

metric probes, including measured CPU utilization we are interested in, once per minute

by default. To verify whether the average CPU utilization is really as expected, around 60

percent, we have to wait a couple of minutes. During that time, let’s briefly discuss boot

volumes. Go to the OCI Console and perform the following steps:

 1. Go to Menu ➤ Compute ➤ Instances.

 2. Make sure that the Sandbox compartment is selected.

You should be able to see the newly provisioned instance,

as shown in Figure 6-34. As promised, the current shape is

VM.Standard2.1 and ships with one OCPU that effectively means

two vCPUs visible for the operating system.

Chapter 6 patterns for Compute and networking

329

 3. Click the name of the newly provisioned instance to see the

instance details.

 4. In the Resources menu, select Boot Volume.

In front of your eyes appears the boot volume that is attached to the instance. What

is a boot volume? Quite simple. A boot volume is a block volume where the operating

system, the root file system, and sometimes additional software reside. It gets created

based on the image you’ve chosen, whether it is just a base operating system image or a

custom image with additional software. In other words, you could consider saying that

a boot volume is a place where some part of the state of a particular instance is stored.

Figure 6- 35 shows the instance’s boot volume.

Figure 6-34. Viewing an instance before scaling up

Figure 6-35. Viewing the instance’s boot volume

Boot volumes are created in the same availability domains as their initial parent

instances. You can clearly see the image that served as a template for this boot volume.

In my case, it was CentOS 7 (April 2019 build). Encryption at rest is enabled by default.

For VM-based shapes, you may consider using the in-transit encryption. In many cases,

it may not be required because the underlying iSCSI data exchange between the instance

and block storage takes place on an internal network anyway. The size of a boot volume

Chapter 6 patterns for Compute and networking

330

must be equal to or greater than the size of the image, but not smaller than 50GB, with

some exceptions for selected base images. Last but not least, it is good to know that a

volume can be resized, but this operation must be performed on a detached volume.

Even though boot volumes are created together with compute instances during

instance launch, boot volumes are still regular cloud resources whose lifecycle can be

separate from compute instances. This lets you detach a boot volume and attach it to a

new compute instance, which may use a more powerful shape at the end of the day. In

this way, you are doing nothing else but scaling an instance vertically up.

It is time to return to the instance metrics and confirm that the stress-ng-based

service indeed generates around 60 percent of CPU utilization.

 1. In the Resources menu, select Metrics.

 2. Click the CPU Utilization widget, and adjust the x-axis.

If you wait a few minutes, you will be able to see, as shown in Figure 6-36, that the

instance is busy to the degree we looked forward to, namely, 60 percent. As soon as we

double the number of cores, the CPU utilization should fall to something around 30 percent.

Figure 6-36. Viewing an instance’s (one OCPU) CPU utilization

In January 2020 Oracle Cloud Infrastructure will introduce a convenient API-driven

and fully-automated vertical scaling for compute instances. For majority of shapes, you

will be able to use the UpdateInstance API to update any existing instance with a new,

more or less powerful, shape. A running instance will be restarted but you should expect

the instance’s IP addresses, VNIC and volume attachments to remain unchanged. The

CLI command to apply a new shape to a running instance will look something like this:

oci compute instance update --instance-id $INSTANCE_OCID --shape

VM.Standard2.2 --wait-for-state RUNNING

Chapter 6 patterns for Compute and networking

331

If you are reading this book late enough, this feature is already available. Yet, for

the purpose of the incoming exercise, do not execute the oci compute instance update

command at this stage. If you’ve already done it, please scale the instance back to the

VM.Standard2.1 shape, before you continue.

Alternatively, there has always been another way to scale an instance vertically.

This method involves detaching a boot volume, shutting down the old instance and

launching a new instance reusing the boot volume. I am going to explain it using

Terraform. Let’s assume you have an idea to replace the shape name in the compute.tf

infrastructure code file. Let me simulate such a change and explain the trap you can fall

into. Shall we? You are just watching. I am commenting out the old line and adding a

new one, this time with a more powerful shape (VM.Standard2.2) like this:

resource "oci_core_instance" "vm" {

...

shape = "VM.Standard2.1"

 shape = "VM.Standard2.2"

...

}

Running terraform plan provides the explanation of what would happen if I chose

to apply this infrastructure code amendment:

$ terraform plan

...

Terraform will perform the following actions:

-/+ oci_core_instance.vm (new resource required)

...

boot_volume_id: "ocid1.bootvolume.oc1..........w37sra" => <computed>

...

image: "ocid1.image.oc1..........ai3kha" => <computed>

...

shape: "VM.Standard2.1" => "VM.Standard2.2" (forces new resource)

...

Plan: 1 to add, 0 to change, 1 to destroy.

Chapter 6 patterns for Compute and networking

332

Note if you see 0 to add, 1 to change, 0 to destroy it means that the convenient,
fully-automated and api-driven vertical scaling feature has not only been enabled
in the oCi api, but also in the terraform provider plugin. in such a case, the
problem described below does not apply anymore. Yet, you can still perform the
semi-manual vertical scaling method as described below. as a matter of fact, it will
still teach you how to detach and reattach boot volumes.

The output of the terraform plan command says 1 to add, 0 to change, 1 to destroy.

Well, at first glance, you may think we expected this compute instance to be terminated

anyway and a new one, more powerful one launched. Correct. The problem here is that

the new instance would also get a totally new boot volume built once again from the

newest CentOS 7 base operating system image. This behavior is defined in the source_

details object in this part of the infrastructure code:

data.tf

...

data "oci_core_images" "centos_image" {

 compartment_id = var.tenancy_ocid

 operating_system = "CentOS"

 operating_system_version = 7

}

...

compute.tf

resource "oci_core_instance" "vm" {

...

 source_details {

 source_id = data.oci_core_images.centos_image.images[0].id

 source_type = "image"

 }

...

}

Within the source_details object, the source_type still suggests that a new boot

volume has to be created based on the image specified with the source_id attribute.

Chapter 6 patterns for Compute and networking

333

I hope you understand now why a simple shape replacement in the infrastructure code

file won’t work and may even be harmful because any application state persisted in the root

file system would be lost. Talking about application state in the root file system, the cloud-

config file has not only added a new stress-ng-based systemd service but also created a

tiny text file containing the initial boot timestamp. We are going to use this timestamp to

validate whether we are still using the same boot volume after having scaled the instance

vertically up. First, connect to the instance and note the contents of this tiny file:

$ ssh -i ~/.ssh/oci_id_rsa opc@$INSTANCE_PUBLIC_IP

[opc@vm-1-ocpu ~]$ cat datemarker

Sat Apr 27 17:01:34 GMT 2019

[opc@vm-1-ocpu ~]$ exit

To scale an instance vertically, these are the steps you have to perform:

 1. Stop the old instance while preserving the boot volume.

 2. Detach the boot volume.

 3. Create a new instance using the detached volume.

We are going to adapt the Terraform infrastructure code to transfer the instance

into a stopped state. If you are on Linux or using Windows Subsystem for Linux, use the

following sed command to uncomment currently commented blocks in the compute.tf

file in the chapter06/3-instance-scale-up directory:

$ pwd

/Users/michal/git/oci-book/chapter06/3-instance-scale-up/infrastructure

$ sed -i 's/\/*//; s/*\///' compute.tf

If you are on macOS, use the following sed command:

$ sed -i '.bak' -e 's/\/*//; s/*\///' compute.tf

This will uncomment the code by removing all block comment marks (/* and */) in

the compute.tf file, as shown in Listing 6-13.

Chapter 6 patterns for Compute and networking

334

Listing 6-13. compute.tf (Root Module) Part to Uncomment

resource "oci_core_instance" "vm" {

...

...

 # 1. Stop the instance

 state = "STOPPED"

 preserve_boot_volume = true

}

output "vm_bootvolume_ocid" {

 value = oci_core_instance.vm.boot_volume_id

}

Run terraform plan. You see something like this:

$ terraform plan

An execution plan has been generated and is shown in the following.

Resource actions are indicated with the following symbols:

 + create

 ~ update in-place

Terraform will perform the following actions:

~ oci_core_instance.vm

 preserve_boot_volume: "" => "true"

 state: "RUNNING" => "STOPPED"

...

Plan: 0 to add, 1 to change, 0 to destroy.

Run terraform apply.

$ terraform apply -auto-approve

...

Apply complete! Resources: 0 added, 1 changed, 0 destroyed.

Outputs:

vm_public_ip = 130.61.48.49

image_name = CentOS-7-2019.04.15-0

vm_bootvolume_ocid = ocid1.bootvolume.oc1....w37sra

Chapter 6 patterns for Compute and networking

335

We have output the OCID of the boot volume. Now, we are moving to detach the

volume from the instance. For this task, we are going to employ the OCI CLI.

Note it is of course possible and really quick to use the oCi Console to detach a
particular boot volume, but in the course of the book, we prefer automation over
manual interactions with the user interface.

Why can we not stay consistent and continue using Terraform alone for this action as

well? If you look into each infrastructure code file, you won’t find any resource representing

the boot volume that came with the instance. At the time of provisioning, the lifecycle of

the instance and its boot volume were not separated. Therefore, we cannot use Terraform

alone. This is one of the cases where a solid blend of a declarative infrastructure code

(Terraform) approach and imperative programming techniques (CLI) are both required to

accomplish the task. To detach the boot volume from an instance, follow these steps:

$ BOOTVOLUME_OCID=`terraform output "vm_bootvolume_ocid"`

$ echo $BOOTVOLUME_OCID

ocid1.bootvolume.oc1....w37sra

$ BOOTVOLUME_AD=`oci bv boot-volume get --boot-volume-id $BOOTVOLUME_OCID

--query 'data."availability-domain"' --profile SANDBOX-ADMIN | sed 's/["]//g'`

$ echo $BOOTVOLUME_AD

feDV:EU-FRANKFURT-1-AD-1

$ BOOTVOLUME_ATTACHMENT_OCID=`oci compute boot-volume-attachment list

--availability-domain $BOOTVOLUME_AD --boot-volume-id $BOOTVOLUME_OCID

--query 'data[0].id' --profile SANDBOX-ADMIN | sed 's/["]//g'`

$ echo $BOOTVOLUME_ATTACHMENT_OCID

ocid1.instance.oc1....gnzzyq

$ oci compute boot-volume-attachment detach --boot-volume-attachment-id

$BOOTVOLUME_ATTACHMENT_OCID --wait-for-state DETACHED --force --profile

SANDBOX-ADMIN

Action completed. Waiting until the resource has entered state: DETACHED

Chapter 6 patterns for Compute and networking

336

We began by using the terraform output command to persist one of the outputs that

contains the OCID of the boot volume into a variable. In the next step, we used the oci bv

boot- volume get CLI command to extract the name of the availability domain in which

both the instance and the volume are located. Consequently, we used the oci compute

boot- volume- attachment list CLI command to fetch the name of the boot volume

attachment. At the time of writing, the OCID of the boot volume attachment is the same

as the OCID of the instance, but to avoid problems in the case of any future changes, we

followed the most reliable procedure to obtain the OCID of the attachment. Finally, we

issued the oci compute boot-volume-attachment detach CLI command to trigger the

asynchronous job that detaches the volume. We applied the --wait-for-state DETACHED

option to keep the steps blocking and thus make it effectively synchronous. Additionally,

we used the --force option to skip the confirmation prompt. You will find both options

useful in case you decide to automate these steps as a single “scale-up” pipeline together

with Terraform-based steps. All in all, the few commands will eventually cause the

detachment operation of a boot volume, as shown in Figure 6-37.

Figure 6-37. Observing a boot volume while detaching

To view the boot volume in OCI Console, you have to perform the following:

 1. Go to Menu ➤ Compute ➤ Boot Volumes.

 2. Make sure that the Sandbox compartment is selected.

Although the volume has been detached, it is still listed as present. It is shown in

Figure 6-38. This was exactly our goal.

Chapter 6 patterns for Compute and networking

337

If you open the boot volume details view and choose the Attached Instances in

the Resources menu, you will see that there are no compute instances attached to that

volume anymore. At the same time, the original instance we launched earlier, together

with the boot volume, reports that the boot volume is effectively detached, as shown in

Figure 6-39.

Figure 6-38. Viewing a boot volume in the OCI Console

Figure 6-39. Viewing a detached boot volume

We are now ready to terminate the old and launch a new, more powerful compute

instance using the boot volume we’ve just detached from the old instance. The new

instance must be launched in the same availability domain.

Caution You have to be careful not to re-initialize the new instance with cloud-
init. otherwise, you may corrupt the application state on this new instance, which
is provisioned using an existing boot volume. in our case, the new, more powerful
instance attached to an existing boot volume will use no cloud-config at all.

For provisioning, we will use declarative approach with Terraform. Before executing

terraform apply, you have to do the following:

Chapter 6 patterns for Compute and networking

338

 1. Comment the contents or simply remove the entire compute.tf

file to terminate the older instance that was stopped a few

moments ago.

 2. Uncomment the contents of the compute-ocpu2.tf file (by

removing the /* clause at the beginning of the file and the */

clause at the end of the file). This will provision the new instance.

These two tasks are easy to script. To perform them on Linux or Windows Subsystem

for Linux, execute the following code:

$ rm compute.tf

$ sed -i 's/\/*//; s/*\///' compute-ocpu2.tf

If you are on macOS, you need to use the sed command in a slightly different way.

$ rm compute.tf

$ sed -i '.bak' -e 's/\/*//; s/*\///' compute-ocpu2.tf

Listing 6-14 presents the infrastructure code for the new, more powerful instance. It is

similar to the code used for the old instance, yet there are a few considerable differences.

• The shape (VM.Standard2.2 instead of VM.Standard2.1).

• The source type is set to bootVolume, and the OCID of the existing

boot volume is supplied through a Terraform variable.

• There is no user data, and therefore no additional initialization on

first boot with cloud-init is done for the new instance, so as not to

alter what is present in the boot volume.

• The display name (vm-2-OCPU instead of vm-1-OCPU).

Listing 6-14. compute-2-ocpu.tf (Root Module)

variable "vm_2_ocpu_bootvolume_ocid" { }

 # 2. Add the new instance

resource "oci_core_instance" "vm_2_ocpu" {

 compartment_id = var.compartment_ocid

 display_name = "vm-2-OCPU"

 availability_domain = data.oci_identity_availability_domains.ads.

availability_domains[0].name

Chapter 6 patterns for Compute and networking

339

 source_details {

 source_id = var.vm_2_ocpu_bootvolume_ocid

 source_type = "bootVolume"

 }

 shape = "VM.Standard2.2"

 create_vnic_details {

 subnet_id = oci_core_subnet.net.id

 assign_public_ip = true

 }

 metadata = {

 ssh_authorized_keys = file("~/.ssh/oci_id_rsa.pub")

 }

}

output "new_vm_public_ip" { value = oci_core_instance.vm_2_ocpu.public_ip }

Here are the steps to apply the new infrastructure code. Please note that we are using

the previous Terraform output captured as the BOOTVOLUME_OCID variable and using it to

set and export (!) a new environment variable (TF_VAR_vm_2_ocpu_bootvolume_ocid)

and, in this way, pass the OCID of the existing boot volume to Terraform.

$ echo $BOOTVOLUME_OCID

ocid1.bootvolume.oc1....w37sra

$ export TF_VAR_vm_2_ocpu_bootvolume_ocid=$BOOTVOLUME_OCID

$ echo $TF_VAR_vm_2_ocpu_bootvolume_ocid

ocid1.bootvolume.oc1....w37sra

$ terraform plan

An execution plan has been generated and is shown in the following.

Resource actions are indicated with the following symbols:

 + create

 - destroy

Terraform will perform the following actions:

 - oci_core_instance.vm

 + oci_core_instance.vm_2_ocpu

Chapter 6 patterns for Compute and networking

340

...

 availability_domain: "feDV:EU-FRANKFURT-1-AD-1"

...

 source_details.#: "1"

 source_details.0.source_id: "ocid1.bootvolume.oc1....w37sra"

 source_details.0.source_type: "bootVolume"

...

Plan: 1 to add, 0 to change, 1 to destroy.

As long as the plan reports that the old instance will be destroyed and the new one

built using an existing boot volume, we are ready to go.

$ terraform apply -auto-approve

...

Apply complete! Resources: 1 added, 0 changed, 1 destroyed.

Outputs:

new_vm_public_ip = 130.61.90.54

image_name = CentOS-7-2019.04.15-0

$ NEW_INSTANCE_PUBLIC_IP=`terraform output new_vm_public_ip`

Tip do not worry, if the terraform apply command produces the Service Error:
Conflict. in such a case, the old instance has not been deleted before the creation
of the new instance. this leads to the situation in which the boot volume, even
though detached, is still seen as assigned to the old instance. to continue, just run
the terraform apply -auto-approve command again.

If you follow the intermediary Terraform output, you will actually spot that the

creation of the newer instance will effectively begin after the destruction of the older

instance, as shown in Figure 6-40. This is happening because the boot volume, even

though detached, is still registered by the older instance. As long as the Terraform

timeout for the create operation is set large enough, you should experience no problems.

Chapter 6 patterns for Compute and networking

341

As soon as the new instance is ready and a few moments to start the ssh daemon

have passed, feel free to connect to the instance and see whether the file written on the

initial boot of the first instance survived the reattachment of the boot volume.

$ ssh -i .ssh/oci_id_rsa opc@$NEW_INSTANCE_PUBLIC_IP

[opc@vm-2-ocpu ~]$ cat datemarker

Sat Apr 27 17:01:34 GMT 2019

[opc@vm-2-ocpu ~]$ exit

Perfect. The fact that the file exists and the contents match what we checked earlier

is proof that the boot volume has indeed survived the reattachment and effectively the

scale-up operation.

The new instance comes with a doubled number of vCPUs, while our CPU utilization

stress testing service parameters remain unchanged. As a result, we expect that this time

instead of 60 percent of CPU utilization we see something around 30 percent of CPU

utilization. Let’s verify this. Go to the Metrics view of the new instance.

Figure 6-40. Viewing the provisioning of a new scaled-up instance

Chapter 6 patterns for Compute and networking

342

After a couple of minutes, you should indeed see the CPU utilization stable

around 30 percent. This proves that our scale-up operation has been successful. We

have managed to reuse the same boot volume on a more powerful compute instance.

If you automate the steps described in this section, you will see that the logic is rather

simple here.

One more thing, if you look at the name of the boot volume, as shown in Figure 6-42,

and compare it with the name of the new instance, you will see that the name of the

boot volume is the same as the name of the older instance that has been terminated.

Having the vm-1-OCPU boot volume attached to the vm-2-OCPU instance looks a bit odd,

doesn’t it?

Figure 6-42. Viewing the old name of the boot volume

Figure 6-41. Viewing an instance’s (two-OCPU) CPU utilization

Chapter 6 patterns for Compute and networking

343

Luckily, it is easy to rename the display name of a boot volume with no impact on

data or instance downtime. All in all, the display name is just the metadata, isn’t it? To

rename a boot volume, you can use the oci bv boot-volume update CLI command

with the --display-name option to set the new name like this:

$ oci bv boot-volume update --boot-volume-id $BOOTVOLUME_OCID --display-

name vm-bv --profile SANDBOX-ADMIN

At this stage, this exercise is completed. Please use the terraform destroy

command to free up the resources and stop the billing.

$ terraform destroy -auto-approve

The boot volume will be terminated with the new instance, as shown in Figure 6-43.

 Immutable Infrastructure
The high level of API-driven automation and the rapid self-provisioning of pooled

infrastructure resources make cloud computing the key enabler for the immutable

infrastructure pattern. The word immutable is synonymous to words such as

unchangeable, permanent, or fixed. An infrastructure that does not change must

be created in a relatively negligible time and ready to serve its business purpose

straightaway. The latter implies that immutable infrastructure comes together with

a preinstalled and already initialized application layer ready to deliver services and

process data. Sooner or later, an upgrade of selected components will be required. This

is where the word immutable comes into play. In contrast to the traditional server-

and application lifecycle, the immutable infrastructure pattern assumes that a new

set of cloud resources is provisioned based on the upgraded images and enhanced

initialization code, and any incoming traffic is properly redirected and the old

infrastructure simply terminated.

Figure 6-43. Viewing the terminated boot volume

Chapter 6 patterns for Compute and networking

344

An immutable infrastructure can incorporate autonomous intelligence such as

horizontal compute autoscale. The autoscale would then dynamically adapt the count

of instances based on the metrics described earlier in this chapter. The key idea here is

that no human intervention is needed, and because of that, the infrastructure can be

considered immutable.

Because of the complexity of the application landscape, data flow dependencies,

and various service continuity requirements, it would be rather utopic to think that the

entire cloud infrastructure for all systems can be treated as a single set of immutable

resources. In reality, you control multiple sets of cloud resources that are managed

independently as immutable infrastructure. Furthermore, you usually decide that some

cloud resources, especially managed platform services, won’t be provisioned using

this pattern. All in all, you should carefully pick a proper split of cloud resource groups

having both of the ones that follow the immutable infrastructure pattern as well as the

ones that rely on the traditional, dynamic, and long-living infrastructure lifecycle.

I mentioned earlier that immutable infrastructure infers that hosted applications

and systems are operational as soon as the fully automated provisioning run has been

completed. In the course of the exercises included in this book, we extensively used

Terraform with cloud-config files processed and executed on instance boot by cloud-

init. I am a great fan of cloud-init, but I admit that the more complex application

initialization logic gets, the more inefficient it is to use cloud-init. The limitations

of cloud-init become visible especially when you are initializing complex clustered

systems where different nodes carry diverse roles, such as master or worker, and

require a specific initialization sequence.

One option would be to use Terraform provisioners to execute scripts on remote

cloud hosts in a particular sequence based on a predefined dependency tree. Some

consider Terraform provisioners as if they were making Terraform infrastructure code

no longer simple and readable. Well, Terraform infrastructure code is rather meant

to be declarative. Using standard Terraform configurations such as resources, data

sources, or modules is indeed purely declarative, which entails many benefits. First,

you never worry about the execution steps needed to bring the actual state to the

target state. This task is done by Terraform. If you are extending this clean declarative

approach by using provisioners, you are adding the imperative nature and effectively

mixing the two paradigms (declarative and imperative) in the same code base. In this

way, the infrastructure code would become harder to understand and maintain.

Another option I would recommend for really complex architectures is to

implement the immutable infrastructure by properly combining declarative

Chapter 6 patterns for Compute and networking

345

Terraform-based infrastructure code with imperative initialization logic orchestrated

with Ansible. Ansible is an agent-less automation tool used to remotely manage

compute instances. Its capabilities include not only system administration but also

application deployment. Both Terraform and Ansible could be executed on the same

build server and encapsulated as repeatable jobs within a complete CICD pipeline.

The provisioning pipeline could consist of four stages, as illustrated in Figure 6-44 and

understood as follows:

 1. The cloud infrastructure is created based on the declared target

infrastructure defined using Terraform configuration files.

 2. Preinstalled applications and libraries can be shipped already

included in the custom images used to launch instances.

 3. Some initial operating system and application initialization logic is

executed by cloud-init based on the supplied cloud-config user data.

 4. More distributed and interdependent initialization tasks are finally

performed through a set of Ansible-based playbooks.

Figure 6-44. Immutable architecture with Terraform and Ansible

Chapter 6 patterns for Compute and networking

346

 Summary
The main goal of this chapter was to familiarize you with some of the core cloud

infrastructure patterns you will encounter while designing cloud-based solutions or

migrating existing systems to the cloud. We began with discussing virtual networking by

looking at VCNs, regional and AD-specific subnets, VNICs, and private IPs. Two types

of public IPs, ephemeral and reserved, were subsequently covered in the context of

Internet-facing instances. Next, we glanced over the bastion host and NAT gateway pattern

applied to provide secure Internet connectivity to isolated instances attached to private

subnets. You used Terraform to provision the corresponding infrastructure and see this

pattern in action. We briefly looked at routing and spent some more time clarifying the

differences between stateful and stateless security rules. You learned how to use local

VCN peering to interconnect different VCNs in the same region. A dedicated network

compartment pattern was given as an alternative to VCN peering, especially in the context

of more complicated architectures. A large part of this chapter was devoted to elasticity

delivered with horizontal and vertical instance scaling. You used instance pools, instance

configurations, and autoscale configurations to experiment with horizontal scaling. You

learned how to scale an instance vertically up by moving to a more powerful compute

shape, while at the same time reusing the existing boot volume that had been created while

booting the original instance. Finally, you read about immutable infrastructure and were

briefly introduced to the tools you can use to implement a provisioning pipeline.

Chapter 6 patterns for Compute and networking

347
© Michał Tomasz Jakóbczyk 2020
M. T. Jakóbczyk, Practical Oracle Cloud Infrastructure, https://doi.org/10.1007/978-1-4842-5506-3_7

CHAPTER 7

Autonomous Database
Storing data can be challenging. There are many aspects to consider. In this chapter,

we are going to explore one of the flagships of Oracle Cloud, a fully managed Oracle

database available as a platform as a service in Oracle Cloud.

 Relational Data Model
The way you structure and organize data is typically called a data model. A data model

alone generally implies various relationships and integrity requirements between

individual data entities. A data entity can represent an individual business object such

as a product, a customer, or a sales item. Data entities are also used to embody technical

data such as some kind of collected measurement probes. Each data entity must be

eventually reflected in the form of physical data entry in a particular type of a database.

The type of a database entails, to some extent, the primary physical data entry format.

The following are a few popular database types:

• Relational model based on two-dimensional tables

• Document-oriented model based on JSON or XML documents

• Graphs

• Key-value stores

• Wide column stores

Two-dimensional tables are considered as the most popular and, historically, most

prevalent way of organizing business-related data. Furthermore, business professionals

are typically used to data representation in a tabular form because of their everyday work

with spreadsheets. Looking at two-dimensional tables, rows correspond to individual

data objects, and columns represent the attributes these objects have, as illustrated in

Figure 7-1.

348

Business data entities such as products, customers, or sales items rarely exist in

isolation but nearly always happen to be somehow related to other entities. For example,

sales items can refer to products they ship and customers who made the purchase. To

express these relationships between two-dimensional tables, you leverage the relational

data model that, by its design, truly helps database engines in

• Protecting data integrity

• Resolving and optimizing queries

What does it mean to protect data integrity? A particular sales item entity could be

created, provided that the product entity it is referring to already exists. A relational

database is able to enforce such a requirement and prohibit the creation of sales item

table entries when the given product entries do not exist in the product table. This is

called referential integrity. Relational databases really shine in this field. Even though

relational databases technically can store duplicate rows, it is not desired in some

workload types, especially operational ones. In their case, a single product usually

should be represented by a single, easily identifiable data entry. To uniquely identify a

selected product in a table, the data entry must have one or more columns whose values

altogether uniquely identify the data entity. To prohibit the database from inserting

duplicates, you create a unique key data integrity constraint over these columns. Any

attempt to insert a new data row with an already existing set of values in unique-

key columns will be rejected. Data integrity is protected based on the types of each

individual column. Relational databases are traditionally based on tables with fixed-

type columns. Each column is defined with a column data type that can be one of many

supported character, numeric, date, and time datatypes. For example, the product name

column could be of a Unicode-based variable-length character type with a maximum

Figure 7-1. Two-dimensional table

Chapter 7 autonomous Database

349

length expressed by the number of characters, while the sales item quantity column is

defined using a nonnegative integer numeric type. Inserted values that do not comply

with the column data type are rejected. Integrity checks can additionally enforce

that a given column allows only the words that match a given regular expression or

numeric values that belong to a particular range. This can be implemented using check

constraints. In the real world, developers sometimes decide to build this kind of check

for selected columns in the application layer instead. It all depends on the purpose and

context a particular data model is created for. At this stage, it must be said that not every

workload needs a data model with built-in integrity checks. As a matter of fact, there are

use cases where data model flexibility is more valued than integrity enforcement. Yet,

business-related data is typically in favor of having them.

Storing data is just one end of the stick. To use the persisted data, you have to be able

to regularly and efficiently retrieve it from a database. To fetch the desired subset of data

entries, you query the database engine. For a relational database, you usually precisely

define what is to be returned using standardized Structured Query Language (SQL),

sometimes extended with database-specific features. A SQL query is sent from a client to

the database engine, which translates it into a query execution plan. Based on this plan,

data is retrieved by the database engine and sent back to the client. Listing 7-1 presents a

basic SQL query that selects product names and barcodes of all products whose barcode

starts with 590 and category code is equal to REG.

Listing 7-1. SQL SELECT Statement

SELECT name,barcode

FROM products

WHERE barcode LIKE '590%' AND category_code = 'REG';

Queries may target single tables or span multiple tables, joining them as needed.

Rows from different tables are joined based on the relationships defined in a particular

data model. For example, if you want to collect all sales items that refer only to these

products that are categorized as mathematical books, the database engine will have to

join at least the sales items table with the products table and apply proper filters to sort

out the other categories. How two tables are joined is derived from their logical design.

The most popular type of relationship is when one table reflects entities that can be

referenced by multiple entities from the second table. At the same time, each entity in

the second table can reference only one entity from the first table. This is called a one-

to-many relationship. This can be the relationship between the sales items table and the

Chapter 7 autonomous Database

350

products table. Multiple sales items reference the same product, while only one product

is referenced by a single sales item. This is implemented by storing the unique identifier

of the referenced product in the sales items table for each entry, as shown in Figure 7-2.

This key is typically called a foreign key.

Figure 7-2. Modeling one-to-many relationship

To speed up queries that are expected to be frequently made, relational databases

rely on additional data structures called indexes, which are used to bypass costly full-

table searches and optimize table joins. A standard B-tree index is associated with a

single table and created over one or more columns. The order of columns in an index

matters. Queries that use these columns to filter the results as well as table joins that are

based on these columns may benefit from a largely accelerated operation time. B-tree

indexes point to a single row. Bitmap indexes are another type of index popular for

implementing analytical data models. They are created over columns that store a small

number of discrete values and enable complex searches that rely on set operations.

Bitmap indexes point to multiple rows and in this way can be used to speed up aggregate

queries. As soon as you create an index, its management is taken over by the database

engine. Every time you issue an insert, update, or delete operation over a data row, the

corresponding indexes will be brought up-to-date.

Chapter 7 autonomous Database

351

One of the key notions related to data-modifying operations against databases are

transactions. A transaction makes sure that a set of data-modifying operations is either

carried out as one or none of the transactions takes place. No intermediary states are

allowed to impact the data set that is the subject of the data-modifying operations wrapped

inside the transaction. When transaction is committed, all statements are applied in the

database. If one of the statements fails or a transaction is intentionally rolled back, none

of the statements will result in data set changes. This lets developers implement complex

use cases and proper error handling in their applications that interact with databases.

Transactions adhere to the so-called ACID properties, which means that transactions are

• Atomic

• Consistent

• Isolated

• Durable

Atomicity and consistency imply that either all or none of the operations are applied

to the entire data set that is the subject of the transaction and no intermediary states

of data entries are allowed in the database. Isolation means that it is possible to run

multiple concurrent transactions, and the result of any given transaction is visible

to other transactions only after it has been successfully committed. As a matter of

fact, there are a few so-called isolation levels, and they decide how active concurrent

transactions are handled. Last but not least, durability promises that any committed

transaction is permanent and never lost, even in the case of database engine failure.

 Oracle Database
Relational databases have been widely used as a data backbone across different

industries for decades. Oracle Database was the first commercially available SQL-based

relational database management system (RDBMS) introduced in 1979. A few years

earlier, in 1970, the relational model of data was publicly introduced by Edgar F. Codd in

his theoretical, mathematical-based paper “A Relational Model of Data for Large Shared

Data Banks.” This model eventually became the predominant database model for a few

decades and made Oracle Corporation the dominant market leader in this field. Oracle

Database has evolved for 40 years. During these years, Oracle ported the database

code to the C language, hardened transaction support, enhanced transaction isolation

Chapter 7 autonomous Database

352

consistency, moved to a client-server mode allowing network-based architectures,

improved locking, introduced various backup strategies, added PL/SQL (which is a

procedural extension to SQL), introduced triggers and stored procedures, offered high

availability through clustering, leveraged compression to optimize the storage footprint,

and included a countless number of other improvements such as XML and JSON

support, in-memory and grid-computing support, Spatial and Graph, data masking for

security and testing, advanced monitoring, REST data services, and many more. In 2013,

multitenancy arrived with version 12c in the form of pluggable databases, and Oracle

Database 12c was marketed as the world’s first (relational) database designed for the

cloud. Oracle Database can be used for both transactional (OLTP) and analytical (OLAP)

workloads and meets a broad range of enterprise demands. Oracle Corporation is also

the custodian of MySQL, one of the most popular open source relational databases that

is often the first choice for small businesses and organizations with limited and rather

nonenterprise requirements.

The abundance of features can result in rather challenging administration tasks

especially in terms of initial setup, hardware selection, proper database tuning, and

resource and performance monitoring. These activities are inevitable and must be carried

out to deliver a production-ready database. The more demanding the expected workloads

are, the more sophisticated setup that has to be put in place. All of these features depend

on a skilled workforce and consume a lot of time. To alleviate this potential pain, more

than a decade ago, Oracle introduced the Exadata database machine that combines

database-optimized hardware, specialized system control software, and, of course, Oracle

Database. The Exadata hardware leverages the InfiniBand networking fabric, NVMe SSD

storage, and many more to provide extreme performance and support a gradual scale-up

by enabling further CPU cores, installing more storage volumes, and even scaling out by

placing additional racks. Customers can install the Exadata rack(s) in their data centers in

order to still physically own data but leverage already-optimized hardware and software

as well as delegate some lifecycle tasks to the built-in automation or Oracle advanced

support experts who deploy and manage the infrastructure.

While operations team may be truly given some time to roll out the environment,

developers usually don’t want to wait. Years ago, Oracle enriched its portfolio with a free

Oracle Database Express Edition (XE) that can be used to rapidly kick off Oracle-oriented

application development and only later transition to working with the Enterprise Edition

of Oracle Database. While Oracle Database Express Edition is fine to begin working

with Oracle Database, it does not help in rapid database instance provisioning and

management for production purposes.

Chapter 7 autonomous Database

353

Cloud computing brings to the market not only software-as-a-service or infrastructure-

as-a-service options but also managed platform services. Managed platform services

can be rapidly provisioned, decrease the overall administrational burden, and let teams

focus on development and the use of a particular platform. Every Oracle Cloud region

comes with a fully managed, highly automated, well-integrated, scalable Oracle database

called Autonomous Database (ADB) available in two flavors: Autonomous Transaction

Processing (ATP) and Autonomous Data Warehouse (ADW). ADB runs on Exadata

hardware plugged into the Oracle Cloud Infrastructure backbone. ADB is marketed as self-

driving, self-securing, and self-repairing, which basically indicates that it is a fully managed

service with little if any administrational effort at all on the customer side. Responsibilities

such as patching, upgrading, tuning, or backing up the database are automatically done in

the background. This allows you to focus on data model design and development, leaving

any database lifecycle tasks to Oracle-maintained automation, as illustrated in Figure 7-3.

Figure 7-3. Autonomous Database

ADB is available in each Oracle public cloud region with two deployments choices.

• Serverless

• Dedicated

Chapter 7 autonomous Database

354

Serverless deployment is the simplest way to launch a managed Oracle Database.

First you choose the target Oracle Cloud region, and then you just select the initial

number of CPUs, storage capacity, admin credentials, and workload type (ATP or ADW).

Later, you will still be able to scale up both the CPU and the storage. Furthermore,

you can enable CPU autoscaling, if needed. Everything else, things such as patching,

upgrades, auto-tuning, and backups, are fully automated in the background. All in

all, the entire lifecycle is managed by Oracle-managed automation. The serverless

deployment option follows the standard pattern widely used in the cloud, namely,

multitenancy. What does this mean? There can be multiple ADB instances used by

different cloud tenants, all running in the same Exadata machine. If higher isolation from

other tenants is required, your enterprise will probably consider ADB in the dedicated

deployment mode, which does require a bit more initial effort but lets your exclusive

Exadata infrastructure run in completely isolated private virtual network in the Oracle

public cloud. While a dedicated ADB is a good choice for enterprises, the majority of use

cases will benefit more from running highly automated serverless ADB. In this book, we

will be solely dealing with serverless ADB.

ADB can be really powerful. At the time of writing, the maximum number of CPU

cores per instance is 128. You can scale an instance at any time up and down both for CPU

count and for storage capacity. Autonomous Database is billed based on CPU and Exadata

storage consumption. If your organization already holds a valid and relevant Oracle

Database license, you can consider choosing the bring-your-own-license (BYOL) option

when launching an ADB instance. It will considerably discount your cloud-based charges.

ADB can tune itself, but it still requires some initial indication on what kind of

workloads are going to be served from the particular instance. Database applications are

generally divided into two groups and require different database tuning.

• Transactional processing (OLTP) systems

• Analytical processing (OLAP) systems

OLTP workloads result in a high frequency and large volume of relatively small write

operations. These operations can originate from hundreds or thousands of clients at the

same time and therefore lead to a large number of concurrent writes that require proper

transactional isolation. In some cases, data can be altered not only interactively but also

based on batch data loads. Transaction processing has become even more significant for

databases with the advent of e-commerce and is sometimes considered as the traditional

domain for relational databases. Transactional databases usually employ highly

Chapter 7 autonomous Database

355

normalized data models, which eliminate redundancy that could otherwise lead to

significant data inconsistencies. You could say that one of the main goals for transaction

processing workloads is to gather data and keep them up-to-date based on the incoming

data modification operations. Autonomous Transaction Processing (ATP) is tuned to

serve this type of workload.

OLAP workloads are characterized by the limited number of transactions in favor of

planned and regular batch loading of large data volumes that often originate from multiple

transactional databases. Data is transformed and consolidated from multiple normalized

transactional databases to a highly denormalized, intentionally redundant, analytical

data model. Analytical databases are tuned in such way to optimize the performance of

both expected and completely ad hoc queries. Typical operations performed on analytical

databases are pivoting, drilling down, rolling up, slicing and dicing, data selection, and

sequencing. The main goal for OLAP systems is multidimensional aggregate data analysis

performed to analyze trends based on historical data, discover various dependencies or

correlations, and eventually provide fine-grained reporting. Autonomous Data Warehouse

is tuned to serve this type of workload.

Workload types served by ATP and ADW are conceptually illustrated in Figure 7-4.

Figure 7-4. ATP and ADW

Chapter 7 autonomous Database

356

 Autonomous Data Warehouse
Autonomous Data Warehouse is optimized to serve analytical processing in OLAP

systems. It uses various Oracle tuning choices such as specific memory allocation,

columnar data format, and parallelized queries to boost the performance of typical

data warehousing tasks. In contrast to transactional systems, data is loaded into ADW

nearly exclusively in batches at most once per day or even less frequently. We are going

to simulate a simple data warehousing use case for the occurrence of various police-

monitored road events across all major roads in Poland collected over a couple of

years. As a matter of fact, the data you are going to use is completely artificial but may

look somehow realistic and provide a good foundation for some data analytics. I have

generated the data based on custom-choice parameters and the wide use of normal

distribution randomness. To begin with, we have to provision a new ADW instance, set

up a database schema, ingest data, and run our analytical queries to answer some of the

business questions. Next, I will briefly explain what the options are to visualize these

discoveries. In the course of this and consecutive sections, you will be introduced to

some basic concepts of data warehousing and apply them in practice.

To provision a new Autonomous Data Warehouse instance, there are a few choices

to be made and a few parameters to be set. ADW instances are region- specific and

compartment-aware. In other words, like with nearly every Oracle Cloud Infrastructure

resource, you have to choose the geographical region in which the instance will be

provisioned. Furthermore, to support environment- and project-specific logical

isolation, you select the compartment in which a particular ADW instance will be

created. If you were to use the OCI Console to launch a new instance of Autonomous

Data Warehouse, you would open a pretty straightforward Autonomous Database

creation wizard, provide both display and database names, set the workload type to Data

Warehouse, and configure the initial hardware profile by defining the number of CPUs

and storage expressed in terabytes, as shown in Figure 7-5. You will be able to tune the

number of CPUs and storage on the fly at any time. Furthermore, you could enable CPU

autoscaling to let the database react to the increased processing needs.

Chapter 7 autonomous Database

357

Figure 7-5. Autonomous Database creation wizard in the OCI Console 1/2

Chapter 7 autonomous Database

358

The database administrator user is called ADMIN. While working with the wizard, you

have to set its password. Another important point is related to the licensing model. If

your organization does not have any available Oracle Database license or you simply do

not know, remember to set the License Included option. In this way, your hourly charge

will include the cost of a “new” database license. These settings are shown in Figure 7-6.

Figure 7-6. Autonomous Database creation wizard in the OCI Console 2/2

Like I mentioned, this book focuses on automation. We are therefore going to use

the OCI CLI to launch a new instance of Autonomous Data Warehouse in the Sandbox

compartment on behalf of the sandbox-admin user. I am assuming the SANDBOX-ADMIN

CLI profile is set properly, as described in Chapter 4, with the corresponding section in

Chapter 7 autonomous Database

359

the oci_cli_rc file that points to the Sandbox compartment as the default compartment

for all CLI commands. Make sure you carefully choose the Admin password, which

must adhere to the guidelines: be between 12 and 30 characters and contain at least one

lowercase letter, one uppercase letter, and one number. To provision the ADW instance,

remember to replace the password and use the db autonomous-database create CLI

command like this:

$ ADW_ADMIN_PASS=evr43453fEWQ3@EF

$ oci db autonomous-database create \

 --db-name ROADDW \

 --display-name road-adw \

 --db-workload DW \

 --license-model LICENSE_INCLUDED \

 --cpu-core-count 1 \

 --data-storage-size-in-tbs 1 \

 --admin-password "$ADW_ADMIN_PASS" \

 --wait-for-state AVAILABLE \

 --profile SANDBOX-ADMIN

Action completed.

Waiting until the resource has entered state: AVAILABLE

Oracle has recently added a free tier marketed as Always Free. At the time of writing,

you can provision up to two ADB instances limited to one OCPU and 20GB each. These

instances won’t incur any costs. To launch an Always Free ADB instance, use the --is-

free-tier true option for the oci db autonomous-database create CLI command.

$ oci db autonomous-database create \

...

--is-free-tier true \

...

Tip If you are working with a paid account, consider using the free tier to launch
your roaDDW aDb instance for the purpose of running the exercises described in
this chapter.

Chapter 7 autonomous Database

360

This will result in the creation of a new serverless Autonomous Database instance

optimized for data warehousing and initially equipped with one CPU and 1TB of

hardware capacity. The response shows a few interesting details including the Oracle

Database version and the Service Console URL.

...

"cpu-core-count": 1,

"data-storage-size-in-tbs": 1,

"db-name": "ROADDW",

"db-version": "18c",

"db-workload": "DW",

"display-name": "road-adw",

"id": "ocid1.autonomousdatabase.oc1.eu-frankfurt-1.ab...hm23ea",

"is-auto-scaling-enabled": false,

"is-dedicated": false,

"license-model": "LICENSE_INCLUDED",

"lifecycle-state": "AVAILABLE",

"service-console-url": "https://adb.eu-frankfurt-1.oraclecloud.com/console/

index.html?tenant_name=OCID1.TENANCY.OC1..AA.........3YYMFA&database_

name=ROADDW&service_type=ADW",

...

ADW database can be used fully independently from the OCI Console; therefore, a

separate dashboard is provided and called the ADB Service Console. You can bookmark

and distribute the direct link as shown in the service-console-url element of the

response to the db autonomous-database create CLI command. After accessing this link

for the first time, you have to sign in as the ADB ADMIN user and provide the password you

set for this user a few moments ago. The overview dashboard of the Service Console is

shown in Figure 7-7.

Chapter 7 autonomous Database

361

Figure 7-7. Autonomous Database Service Console dashboard

Figure 7-8. Viewing ADB instances in the OCI Console

Let’s take a step back and inspect the ADW instance details in the OCI Console. All

instances that exist in a selected compartment are listed, as shown in Figure 7-8.

To display the details of a particular ADB instance in OCI Console, do the following:

 1. Go to Menu ➤ Database ➤ Autonomous Data Warehouse.

 2. Make sure that the Sandbox compartment is selected.

 3. Click the name (road-adw) of your ADW instance.

Apart from the instance information, you will spot a number of various buttons

in the top part of the details view, as shown in Figure 7-9 and the backup area at the

bottom. The Service Console, as the name suggests, will open the instance-specific

console I’ve already introduced you to. The Scale Up/Down will let you tune the number

of CPUs allocated to the instance and storage in 1TB increments. At the time of writing,

you should be able to allocate up to 128 CPUs and up to 128TB of storage to a single

Chapter 7 autonomous Database

362

ADB instance. By default, a standard trial or pay-as-you-go account has a service limit

set to eight CPUs for Autonomous Database, but you can request a limit increase.

Please note that your cloud account is billed based on the number of CPUs in use and

on the allocated storage capacity. To decrease the costs, you can stop the instance if

you know that there will be idle time. This usually makes sense only in the case of data

warehousing systems in specific time windows in which neither data loads take place

nor queries are made. Stopping an instance does not put on hold the costs incurred by

storage capacity.

Autonomous Database is backed up every day with no user intervention required.

Once per week, there is a full backup performed. On the remaining days, there are

incremental backups made. All these backups are retained for 60 days. All automatic

backups can be considered hot backups, which basically means that the database

remains operative and available while a backup is being made. If something goes wrong

such as there is a table accidentally truncated or an entire schema dropped, you can

restore its state from a selected backup. The list of available backups is visible at the

bottom of the ADB detail view in the OCI Console, as shown in Figure 7-10, and can be

obtained with the OCI CLI as well.

Figure 7-9. Available ADB instance actions in the OCI Console

Chapter 7 autonomous Database

363

Figure 7-10. ADB backups in the OCI Console

Even though we could consider using the ADMIN user to make regular database

queries, it would be against the approach generally recommended. Moreover, Oracle

Database objects such as tables or views exist in the scope of schemas. A schema is

associated with a database user. To create a few tables in the road schema, we need to

create the road database user and grant all required privileges to that user. Autonomous

Database is based on and compliant with the newest version of Oracle Database;

therefore, we create database users just as we have done in the case of a traditional

on-premise Oracle Database instance. We are now going to connect to the database as

ADMIN, create a new user, and grant all the required privileges to that user.

Chapter 7 autonomous Database

364

 SQL Developer Web
If you have ever worked with Oracle Database, you probably know what SQL Developer

is. Oracle SQL Developer is a Java-based SQL desktop IDE for Oracle Database. You

can download it for free and use it both with the traditional and Autonomous Oracle

Database. ADB comes with SQL Developer Web, a browser-based equivalent that is

optimized for ADB-related tasks. It provides a subset of features available in the more

mature desktop version, but its capability should be good enough for the majority of SQL

tasks. Let’s access it.

 1. Go to Menu ➤ Database ➤ Autonomous Data Warehouse.

 2. Make sure that the Sandbox compartment is selected.

 3. Click the name of your ADW instance.

 4. Click the Service Console button.

Tip If nothing happens after clicking the service Console button, the new window
might have been blocked by your browser. In your browser, you have to allow this
page to open new windows.

 5. Sign in as the ADMIN user.

 6. Click Development.

 7. Click SQL Developer Web.

If you are prompted to sign in again, use the same ADMIN credentials. You can paste

the following query in the worksheet area and click the green Run Statement button to

see something similar to what is shown in Figure 7-11:

SELECT CURRENT_TIMESTAMP FROM dual;

Chapter 7 autonomous Database

365

Still in SQL Developer Web, paste the SQL statements shown in the following, adapt

the password located after the identified clause, and run the queries:

CREATE USER SANDBOX_USER IDENTIFIED BY "y0uRp@55worD";

GRANT dwrole TO SANDBOX_USER;

ALTER USER SANDBOX_USER QUOTA 500M ON DATA;

A new database user called SANDBOX_USER will be created and given to the predefined

ADW-specific database role called dwrole.

If you click the Script Output tab at the bottom, you should see two messages that

announce the success of both operations.

User SANDBOX_USER created.

Grant succeeded.

Figure 7-11. SQL Developer Web

Chapter 7 autonomous Database

366

The dwrole database role equips a user with three groups of privileges.

• Standard SQL Data Definition Language (DDL) operations such as

creating tables, triggers, views, procedures, and similar

• Oracle-specific data warehousing and business intelligence SQL

Data Definition Language (DDL) operations such as analytic views,

attribute dimensions, hierarchies, and data mining models

• DBMS_CLOUD PL/SQL package that bundles together cloud-based

Autonomous Database procedures primarily related to feeding

database tables from cloud object storage

To let the newly created SANDBOX_USER user access and work in SQL Developer Web,

Oracle REST Database Services (ORDS) access for the user schema has to be enabled.

To do so, still as the ADMIN user, execute the ORDS_ADMIN.ENABLE_SCHEMA procedure as

follows:

BEGIN

 ords_admin.enable_schema(

 p_enabled => TRUE,

 p_schema => 'SANDBOX_USER',

 p_url_mapping_type => 'BASE_PATH',

 p_url_mapping_pattern => 'sandbox',

 p_auto_rest_auth => TRUE

);

 commit;

END;

There should be a message in the Script Output tab at the bottom saying the

following:

PL/SQL procedure successfully completed.

The p_schema parameter references the newly created user, while the p_url_

mapping_type parameter defines the user-specific part in the user-dedicated URL for

SQL Developer Web. Figure 7-12 presents the typical structure of the SQL Developer

Web URL.

Chapter 7 autonomous Database

367

Normally, you prepare the user-specific URL and deliver it to the user by replacing

the schema-alias part with the URL mapping pattern value used earlier in the ORDS_

ADMIN.ENABLE_SCHEMA procedure. You can copy the base SQL Developer Web URL, while

using this browser-based tool still as the ADMIN user. You have to replace the schema-

alias part that, in this case, is originally set to the admin value and use the sandbox value

instead.

Let’s access the SQL Developer Web this time as the SANDBOX_USER. You can open the

amended URL in a new browser tab.

Tip as an alternative to switching tabs, you can use two different browsers for
each sQL Developer Web session.

In this way, you will be able to continue working both as ADMIN in the first tab (or

browser) and as SANDBOX_USER in the second tab (or browser), as shown in Figure 7- 13.

Figure 7-12. SQL Developer Web URL structure

Chapter 7 autonomous Database

368

 Loading Data to ADW
Autonomous Database is a cloud-based managed database service. The recommended

approach for loading data from files is to upload them to an object storage bucket and

execute the DBMS_CLOUD.COPY_DATA procedure to parse these files and insert data into

the database tables. This procedure is capable of loading data from the following:

• Oracle Cloud Infrastructure object storage

• Azure Blob Storage

• Amazon S3

The shortest data load time can be achieved from Oracle Cloud Infrastructure object

storage buckets in the same region as the ADB instance, but other combinations are

absolutely fine as well. The ADW instance accesses OCI object storage on behalf of a

particular IAM user.

Figure 7-13. SQL Developer Web users

Chapter 7 autonomous Database

369

 Database Credential
The DBMS_CLOUD.COPY_DATA procedure references a Credential database object that

holds the authentication details required to access the cloud-based object storage. For

OCI object storage, the IAM user must hold an active Auth Token that will be saved in

this Credential object together with the username. A token is a relatively short Oracle-

generated string. Any IAM user can have up to two Auth Tokens at a time. Tokens can

be created by the users themselves or arbitrarily by administrators either using the OCI

Console or leveraging API-based automation such as the OCI CLI.

This is how you generate an Auth Token as a sandbox-user in the OCI Console:

 1. Log in to the OCI Console as the sandbox-user.

 2. Go to the user profile by clicking the user name, as shown in

Figure 7-14.

 3. On the Resources tab, click Auth Tokens.

 4. Click Generate Token.

 5. Provide a description for your token, and click Generate Token.

 6. Write down your token. You will see it only once.

Figure 7-14. Accessing the user profile in the OCI Console

It is crucial to remember that you see a newly generated Auth Token only once, as

shown in Figure 7-15. If you lose it, you will have to delete the old token and generate a

new one.

Chapter 7 autonomous Database

370

To generate an Auth Token for a selected user programmatically, you can execute the

following CLI commands on behalf of the tenancy admin by using the default profile (no

--profile parameter). First you query for the OCID of a particular user, and then you

are using the iam auth-token create CLI command for that user.

$ TENANCY_OCID=`cat ~/.oci/config | grep tenancy | sed 's/tenancy=//'`

$ IAM_USER_OCID=`oci iam user list -c $TENANCY_OCID --query

"data[?name=='sandbox-user'] | [0].id" --raw-output --all`

$ echo $IAM_USER_OCID

ocid1.user.oc1..aa.........zqpxa

$ oci iam auth-token create --user-id $IAM_USER_OCID --description token-

adw --query ‘data.token’ --raw-output

B8.E_Ry7oOtN1KF0do9x

No matter which way you choose, please make sure you have an Auth Token for the

sandbox-user IAM user.

The new database user called SANDBOX_USER is completely independent from

the sandbox-user IAM user we have been working with in the course of the previous

chapters. We are now going to create a database Credential object to store the username

and the Auth Token for the sandbox-user IAM user. These details will be stored in an

encrypted format in the database. Every time you execute the DBMS_CLOUD.COPY_DATA

procedure to load data from an object in object storage to a database table, you will

provide the name of a Credential object to be used.

Figure 7-15. Seeing a generated token

Chapter 7 autonomous Database

371

Tip From now on, most of the sQL commands will have to be executed in
sQL Developer Web on behalf of the SANDBOX_ADMIN. make sure you open the
correct sQL Developer Web instance, using a user-specific link as described a few
paragraphs earlier.

Open SQL Developer Web as the SANDBOX_USER database user, place the SQL

procedure in the worksheet, use your newly generated Auth Token as the value for the

password parameter, and execute the following command:

BEGIN

 DBMS_CLOUD.CREATE_CREDENTIAL(

 credential_name => 'OCI_SANDBOX_USER',

 username => 'sandbox-user',

 password => 'B8.E_Ry7oOtN1KF0do9x'

);

END;

The Credential objects exist in a particular user schema and can be accessed only

by the users who have access to that schema. Each Oracle Database schema is by

convention associated with a single database user of the same name. You can assume

that, by default, only the Credential owner user is allowed to reference this Credential

object. To delete an existing Credential object, you should rely on the DBMS_CLOUD.DROP_

CREDENTIAL procedure. To list the existing Credential objects in a given schema, you can

use the following SQL query as the schema owner:

SELECT * FROM all_credentials;

Loading data from a file to ADB can be summarized in three steps. We will be

following them a bit later.

 1. Upload the source file in a supported format such as .csv to an

object storage bucket.

 2. Create a new database table for the imported data if the table does

not exist yet.

 3. Execute DBMS_CLOUD.COPY_DATA to populate the table.

This process is conceptually illustrated in Figure 7-16.

Chapter 7 autonomous Database

372

Earlier, we created a Credential database object that will let the ADW instance access

OCI object storage on behalf of a named IAM user. We still need to create an object

storage bucket. In Chapter 5, you learned that to set up a new bucket you can rely on the

following OCI CLI command and execute it on behalf of the sandbox-admin user via the

SANDBOX- ADMIN profile. Do it now and create a new bucket called roadadw-load.

$ oci os bucket create --name roadadw-load --profile SANDBOX-ADMIN

Based on the IAM policy set in Chapter 5, the sandbox-user is allowed to upload

data to only to the object storage bucket called blueprints. Let’s extend this access

scope by adding the new IAM policy statements shown in Listing 7-2. Now, we are going

to let sandbox-users upload objects to the roadadw-load bucket.

Listing 7-2. sandbox-users.policies.adwstorage.json

[

"allow group sandbox-users to read buckets in compartment Sandbox where

target.bucket.name='roadadw-load'",

"allow group sandbox-users to manage objects in compartment Sandbox where

target.bucket.name='roadadw-load'"

]

Figure 7-16. Loading data from object storage to ADW

Chapter 7 autonomous Database

373

We can create a new policy in the Sandbox compartment using the oci iam policy

create CLI command in the same way we added new policies in the previous chapters.

The policy should be added to the Sandbox compartment. As long as you are still using

the oci_cli_rc file configured as described in the previous chapters, these commands

should do the work:

$ cd ~/git/oci-book/chapter07/1-setup/

$ oci iam policy create --name sandbox-users-adw-storage-policy

--statements file://sandbox-users.policies.adwstorage.json --description

"ADW-Storage-related policy for regular Sandbox users" --profile SANDBOX-

ADMIN

With the new policy in place, we are ready to upload the files that hold various input

data for new ADW tables to the roadadw-load object storage bucket. At this stage, it may

be worth mentioning what these files are and how we are going to use them.

 Star Schema
I have already said that we are going to simulate a simple data warehousing use case.

A star schema is a typical constellation of relational database tables that makes it

easier to perform typical business intelligence operations such as pivoting, selection,

slice, and dice as well as drill-down and roll-up. At the beginning of this chapter, I

introduced you to the concept of relationships between tables and their importance

in relational databases. At the heart of a star schema, there is a fact table that contains

partially aggregated, numeric data such as sales results expressed in currency, various

measurements expressed in measured units, production volumes expressed in

quantities, or observed events quantified using gathered statistics. The exercises in this

chapter are built around data that resembles accidents and incidents reported on Polish

roads. These events are quantified using the following measures:

• The number of these events (occurrence)

• People injured

• People killed

Chapter 7 autonomous Database

374

To be able to analyze data, numbers alone are insufficient. We need to know

the context of each record stored in the fact table. These contexts are addressed as

dimensions. A road event can take place on a given day (Time dimension) and on a

given road segment (Road dimension) and have a particular type such as rear-end car

collision, speeding, or unlicensed driving (Event Type dimension). You may want to

group specific types of road events into a hierarchy of categories. A rear-end car collision

and side collision may both belong to the “collision” category. Next, multiple categories

can be grouped into road event classes such as “accidents” or “incidents.” As a result,

the Event Type dimension would have a hierarchy of three levels: topmost road event

classes, middle-level road event categories, and finally low-level road event types. If you

consider the Time dimension hierarchy, the most common levels of granularity are day,

month, and year. In the case of the Road dimension hierarchy, you may differentiate

road segment and road. Dimensions provide each individual fact table entry with a

diverse context, as illustrated in Figure 7-17.

Figure 7-17. Star schema

For example, one of the observations included in the Road Events fact table

could indicate that on March 7, 2017, there were seven run-off-road accidents on the

expressway DK5 road segment in the Kuyavian-Pomeranian voivodeship (area). Further

numeric data included in this particular fact table record could inform us that these

seven accidents involved two injured and six killed in total.

With this chapter in mind, I have already prepared all the data required to perform the

upcoming exercises. You will load the three dimensions and the entire fact table from the

comma-separated-value (CSV) files that are available in the Git repository of this book.

Chapter 7 autonomous Database

375

 Dimensions

We have already said that without proper context, your fact data is virtually useless.

Dimensions provide the context for your facts and let you gain valuable insights into

what the data means. You can find the dimension data files in the chapter07/2-

dimensions directory.

$ cd ~/git/oci-book/chapter07/2-dimensions/

$ ls -1 *_dim.csv

event_dim.csv

road_dim.csv

time_dim.csv

The filenames indicate what kind of data records are stored in each of these files. The

event_dim.csv file contains Event Type dimension entries, the road_dim.csv contains

the Road dimension entries, and the time_dim.csv contains the Time dimension entries.

The files use a well-known CSV human-readable text format. Values are separated using

the comma (,) character. Each row resembles one record of data. The first row contains

a header with column names. Figure 7-18 shows how the .csv file contents map to the

database table we are about to create and feed.

Figure 7-18. Dimension files

Chapter 7 autonomous Database

376

I am assuming you have already created the roadadw-load bucket as instructed a few

moments ago. Let’s upload the dimension files to this bucket. We are going to use the

os object put OCI CLI command. You learned how to do this in Chapter 5. Remember

to choose the SANDBOX-USER CLI profile, which you created in Chapter 4. The profile will

eventually execute the API call on behalf of sandbox-user.

$ oci os object put -bn roadadw-load --file time_dim.csv --profile SANDBOX- USER

Uploading object [####################################] 100%

$ oci os object put -bn roadadw-load --file road_dim.csv --profile SANDBOX- USER

Uploading object [####################################] 100%

$ oci os object put -bn roadadw-load --file event_dim.csv --profile

SANDBOX-USER

Uploading object [####################################] 100%

You can view the newly uploaded files in the Bucket Details view of the object storage

dashboard in the OCI Console. To do so in the OCI Console, perform the following steps:

 1. Go to Menu ➤ Object Storage ➤ Object Storage.

 2. Click the bucket name.

In the Objects table of the Bucket Details view, you should see the objects. Figure 7- 19

presents the three files as object storage objects in the roadadw-load bucket.

Figure 7-19. Dimension data files in an object storage bucket

Chapter 7 autonomous Database

377

The Time dimension includes 731 records. Each record represents one calendar day

between January 1, 2016, and December 31, 2017. If you wondered why there are 731 days

instead of 730 days (2 × 365 days), the answer is simple. The year 2016 is a leap year

and has 366 days in total. The Time dimension has three hierarchy levels, as shown in

Figure 7-20. Each dimension attribute eventually maps to a database table column and

belongs to one particular level. Furthermore, there is one attribute for each level that

uniquely identifies the given level. These attributes (day_id, month_id, and year_id) are

typically suffixed with the _id in their name.

Figure 7-20. Time dimension

The Road dimension includes 263 records and has two hierarchy levels, namely,

Road Segment and Road. A single segment represents all road parts in one particular

voivodeship and of a given type such as regular road (G), main road (GP), expressway (S),

and highway (A). If you look at Figure 7-21, the segment R01S01 represents all roads of

highway type that, from an organizational point of view, belong to the road DK1 and are

located in the Pomeranian voivodeship.

Chapter 7 autonomous Database

378

The Event dimension includes 24 records and has three hierarchy levels. We already

discussed them a bit earlier, but to recap, the most granular Road Event Types are the

middle-level Road Event Category and the topmost Road Event Class, as shown in

Figure 7-22.

Figure 7-22. Road Event dimension

Figure 7-21. Road dimension

Chapter 7 autonomous Database

379

All in all, the dimension data has been successfully uploaded to the object storage in

Oracle Cloud. We still need to create the dimension database tables in our Autonomous

Data Warehouse instance before we attempt to feed these tables. Open SQL Developer

Web for the SANDBOX_USER user, and execute the first SQL Data Definition Language (DDL)

statement.

create table EVENT_DIM (

 event_id char(7) not null,

 event_name varchar2(50) not null,

 category_id char(4) not null,

 category_name varchar2(50) not null,

 class_id char(1) not null,

 class_name varchar2(50) not null,

 constraint pk_event_dim primary key (event_id)

);

As a result, the first dimension table for the Event Type dimension will be created.

Autonomous Database is basically a cloud-based Oracle database; therefore, we are

using Oracle Database data types such as VARCHAR2. We create a table with six columns,

one for each dimension attribute. The primary key of the table is set to the identifier of

the most granular dimension hierarchy level. You should observe the message that the

table has been successfully created.

Table EVENT_DIM created

It is time to feed the newly created database table and load the data from the

corresponding object that encapsulates the comma-separated-value file for the Event

Type dimension. Still, in SQL Developer Web, prepare the DBMS_CLOUD.COPY_DATA

procedure. You will have to amend the file_uri_list input parameter and set it to the

URI of the object that represents the event_dim.csv file. Basically, you have to use your

region code (in my case, it is eu-frankfurt-1) and your object storage namespace (in

my case, it is jakobczyk). You can find the precise value for each object in the Object

Details pop-up of this object in the OCI Console. When ready, execute the following

procedure:

Chapter 7 autonomous Database

380

BEGIN

 DBMS_CLOUD.COPY_DATA(

 table_name => 'EVENT_DIM',

 credential_name => 'OCI_SANDBOX_USER',

 file_uri_list => 'https://objectstorage.eu-frankfurt-1.oraclecloud.

com/n/jakobczyk/b/roadadw-load/o/event_dim.csv',

 format => json_object('type' value 'CSV', 'skipheaders' value '1')

);

END;

The DBMS_CLOUD.COPY_DATA procedure uses a Credential database object referenced

by name that you provide as the value to the credential_name parameter. The

procedure processes all files mentioned with the file_uri_list parameter, taking into

consideration any specific format-related settings that you provide with the format

parameter. Finally, data is inserted into the target table with the name you set with the

table_name parameter. In our case, it will be the EVENT_DIM table we created just a while

ago. We instruct the procedure that the files are in the CSV format, and they include

headers we want to skip. The procedure should result in a brief message that says that

everything went fine.

PL/SQL procedure successfully completed.

We won’t practice error handling here, but it is good to know, briefly, how the

procedure handles any unexpected load issues. First, you have to know the rejectlimit

attribute you can add to the format field. The rejectlimit attribute defines the

maximum number of any encountered invalid rows that will be ignored without forcing

the procedure to error out. This value is set by default to 0, which means that the entire

data load will be rolled back if there is even one row that violates column data type,

referential integrity, or any other constraints. In such a case, you will be notified in the

output message where you can find the detailed procedure log. It is usually stored in a

dynamically created table whose name looks something like COPY$1_LOG.

Let’s take a glance at the Event Type dimension data in the EVENT_DIM database table.

In the same SQL Developer Web worksheet, run the following query to select all records

from the EVENT_DIM table:

select * from event_dim;

Chapter 7 autonomous Database

381

The results are shown in Figure 7-23. Feel free to compare what you see in your

Query Results pane to the contents of the event_dim.csv file.

Figure 7-23. Event dimension data in SQL Developer Web

Now, we are going to repeat what we did for the Event Type dimension and apply the

same steps to load the remaining two dimensions. Create the new database table for the

Road dimension using the following SQL DDL statement:

create table ROAD_DIM (

 segment_id char(6) not null,

 segment_name varchar2(50) not null,

 segment_type char(2) not null,

 segment_voivodeship varchar2(50) not null,

 segment_highway varchar2(50),

 segment_expressway varchar2(50),

 road_id varchar2(10) not null,

 road_name varchar2(10) not null,

 road_lenght number(5),

 constraint pk_road_dim primary key (segment_id),

 constraint chk_segment_type

 check (segment_type in ('A','S','GP','G'))

);

Chapter 7 autonomous Database

382

The ROAD_DIM database table includes two columns that allow NULL values. In the

database world and not only there, NULL is understood as “no value” and is used to differ

from an “empty value.” Furthermore, the table uses an additional CHECK constraint to make

sure that the segment_type column allows only four listed values (A, S, GP, and G). After

running the DDL statement, you should receive the following message:

Table ROAD_DIM created

Consequently, adapt the next procedure shown in the next code snippet by replacing

the region code and object storage namespace as you did before, and execute it to feed

the ROAD_DIM table.

BEGIN

 DBMS_CLOUD.COPY_DATA(

 table_name => 'ROAD_DIM',

 credential_name => 'OCI_SANDBOX_USER',

 file_uri_list => 'https://objectstorage.eu-frankfurt-1.oraclecloud.

com/n/jakobczyk/b/roadadw-load/o/road_dim.csv',

 format => json_object('type' value 'CSV', 'skipheaders' value '1',

'blankasnull' value 'true')

);

END;

This time, we added a new format attribute called blankasnull. As a result, all empty

fields in the source file will be represented as NULL in their corresponding database

fields. We do not expect any surprises.

PL/SQL procedure successfully completed.

Again, use SQL Developer Web to display what has just been copied to the ROAD_DIM

table.

select * from road_dim;

The results are shown in Figure 7-24.

Chapter 7 autonomous Database

383

The only remaining dimension is the Time dimension. Create the following table:

create table TIME_DIM (

 day_id char(6) not null,

 day_date DATE not null,

 day_name varchar2(20) not null,

 month_id char(4) not null,

 month_of_year number(2) not null,

 month_name varchar2(20) not null,

 year_id char(2) not null,

 year_name char(6) not null,

 constraint pk_time_dim primary key (day_id)

);

At this stage as well, everything should go fine.

Table TIME_DIM created

Similar to before, adapt and execute the COPY_DATA procedure to load data from the

time_dim.csv file stored in the object storage to the TIME_DIM database table.

BEGIN

 DBMS_CLOUD.COPY_DATA(

 table_name => 'TIME_DIM',

 credential_name => 'OCI_SANDBOX_USER',

Figure 7-24. Road dimension in SQL Developer Web

Chapter 7 autonomous Database

384

 file_uri_list => 'https://objectstorage.eu-frankfurt-1.oraclecloud.

com/n/jakobczyk/b/roadadw-load/o/time_dim.csv',

 format => json_object(

 'type' value 'CSV',

 'skipheaders' value '1',

 'blankasnull' value 'true',

 'dateformat' value 'YYYY-MM-DD')

);

END;

The TIME_DIM table specifies the DATE data type for the day_date column. Usually, we

need to be a bit careful with this kind of data type and make sure the database precisely

understands the date encoding used in the source data. This is because it is generally

possible to write down a date in multiple ways. For example, the most common date

format in the United States is “month/day/year,” for example “8/16/19.” In Europe, you

use “year month day,” for example, “20190816.” If you look into the time_dim.csv file,

you will see that I applied another date format, namely, year-month-day. August 16,

2019, would be thus written as “2019-08-16.” You use the dateformat attribute provided

to the format field to instruct the procedure how to translate what it finds in the source

data to the DATE data type if inserting the data field into a DATE-type column. Even

though this dimension contains a few more records than the two previous, the procedure

should inform on its success relatively fast.

PL/SQL procedure successfully completed.

You can use this query to see the newly loaded records:

select * from time_dim;

The results are shown in Figure 7-25.

Chapter 7 autonomous Database

385

To sum up this part, the data of all three dimensions is currently present in the

database. It is time to add the facts.

 Facts

Dimensions set the context for the facts. The facts, however, carry the most valuable

information, namely, diverse numeric data that can later be subjected to various

analytical operations. Unlike dimensions, fact tables can indeed be very large and

contain a vast collection of records. On many occasions, the collection of records is so

big that it must be split into multiple source data files. To simulate this, I have prepared

not one but four comma-separated-value files that include the source data for the fact

table. Each file contains facts collected from a period of time that spans half a year. In

this way, altogether, the four files contain data for the period of two calendar years. You

can find the fact data files in the chapter07/3-facts directory.

$ cd ~/git/oci-book/chapter07/3-facts/

$ ls -1 *.csv

facts.16H1.csv

facts.16H2.csv

facts.17H1.csv

facts.17H2.csv

Figure 7-25. Time dimensions in SQL Developer Web

Chapter 7 autonomous Database

386

Figure 7-26 illustrates the structure of a comma-separated-value file that holds data

for the fact table. Each record references one Time, one Road, and one Event dimension

entry. For example, the road_dim_id column of the source file for the fact table matches

one Road dimension record with the same value in the segment_id column. The

columns with dimension information are followed by quantitative data columns that

carry information on the occurrence of road events and the related number of people

injured and killed.

Figure 7-26. Road Event facts

Use the os object put CLI command to upload all four fact files to the object

storage bucket. Remember to apply the SANDBOX-USER profile like before. You can use it

in a Bash shell for loop in this way:

$ for fact in `ls facts.*.csv`; do echo $fact; oci os object put -bn

roadadw-load --file $fact --profile SANDBOX-USER; done

facts.16H1.csv

Uploading object [####################################] 100%

facts.16H2.csv

Uploading object [####################################] 100%

facts.17H1.csv

Uploading object [####################################] 100%

facts.17H2.csv

Uploading object [####################################] 100%

You should now see these files as objects in the roadadw-load bucket, as shown in

Figure 7-27.

Chapter 7 autonomous Database

387

Back in SQL Developer Web, still logged in as the SANDBOX_USER user, execute the

SQL DDL statement that will create your database fact table.

create table ROADEVENTS_FACT (

 time_dim_id char(6) not null,

 road_dim_id char(6) not null,

 event_dim_id char(7) not null,

 occurrence number(10) not null,

 injured number(10) not null,

 killed number(10) not null,

 constraint pk_roadevents_fact

 primary key (time_dim_id, road_dim_id, event_dim_id),

 constraint fk_road_dim

 foreign key (road_dim_id)

 references ROAD_DIM(segment_id),

 constraint fk_event_dim

 foreign key (event_dim_id)

 references EVENT_DIM(event_id),

 constraint fk_time_dim

 foreign key (time_dim_id)

 references TIME_DIM(day_id)

);

Figure 7-27. Facts data files in the object storage bucket

Chapter 7 autonomous Database

388

The fact table references the dimension tables. Foreign key constraints are used to

ensure that a particular dimension table record indeed exists before the fact record is

inserted into the fact table. In this way, we are protecting the referential integrity of our

data model. The table should be created with no problem.

Table ROADEVENTS_FACT created

Oracle automatically creates indexes on columns that are used in primary key and

unique constraints, but not in foreign key constraints. To boost the performance of the

join operations, you can additionally create indexes on all three foreign key columns

like this:

CREATE INDEX roadevents_fact_time_ix

 ON roadevents_fact (time_dim_id);

CREATE INDEX roadevents_fact_road_ix

 ON roadevents_fact (road_dim_id);

CREATE INDEX roadevents_fact_event_ix

 ON roadevents_fact (event_dim_id);

You are now ready to execute the COPY_DATA procedure. Like always, adapt the region

code and the object storage namespace, and execute the following code:

BEGIN

 DBMS_CLOUD.COPY_DATA(

 table_name => 'ROADEVENTS_FACT',

 credential_name => 'OCI_SANDBOX_USER',

 file_uri_list => 'https://objectstorage.eu-frankfurt-1.oraclecloud.

com/n/jakobczyk/b/roadadw-load/o/facts.*.csv',

 format => json_object('type' value 'CSV', 'skipheaders' value '1',

'blankasnull' value 'true')

);

END;

You are already familiar with all the parameters. Please note the wildcard used in the

value of the file_uri_list parameter. In this way, we can specify multiple source files

with a similar name in a convenient way. The procedure should succeed after a short

time.

PL/SQL procedure successfully completed.

Chapter 7 autonomous Database

389

To get an initial impression of how many fact records were actually inserted, we can

run the select count(*) query.

select count(*) from ROADEVENTS_FACT;

The result tells us that there are 377,808 rows in total. Let’s see some of them by

executing a standard select SQL query.

select * from ROADEVENTS_FACT;

Unless you want to export the results, SQL Developer Web will load data gradually in

batches, loading more only if you continue scrolling down. This prevents us from having

to wait too long if not necessary. The results are shown in Figure 7-28.

Figure 7-28. Fact table in SQL Developer Web

You have completed the data loading part of the exercise. As a part of it, we

executed a couple of SQL DDL statements and stored procedures and a few SQL select

statements. The ADB instance gives you some insights into the details of your database.

Let’s take a look at some monitoring features included with ADW.

Chapter 7 autonomous Database

390

 Database Monitoring
An Autonomous Database instance is equipped with a dedicated Service Console that

can be used to monitor the performance of the instance. The ADB Service Console

Dashboard was already shown in Figure 7-7. To access the Service Console, you can use

its direct link, if you saved it earlier. Alternatively, you can always open the OCI Console

and take the following steps:

 1. Go to Menu ➤ Database ➤ Autonomous Data Warehouse.

 2. Make sure that the Sandbox compartment is selected.

 3. Click the name of your ADW instance.

 4. Click the Service Console button.

Tip If nothing happens after clicking the service Console button, the new window
might have been blocked by your browser. In your browser, you have to allow this
page to open new windows.

At the beginning of this chapter, you provisioned your ADW instance. There were

two resource-related parameters you set for the instance, namely, the initial number of

assigned CPUs and the initial storage capacity expressed in terabytes. The Dashboard

provides the current and historical information about the following:

• The CPU allocation and utilization

• The storage capacity used by all database tablespaces

• The average number of executed SQL statements

• The average SQL statement response time

The Activity view presented in Figure 7-29 delivers a bit more granular information

on the service consumption and lets you inspect detailed SQL execution information.

Chapter 7 autonomous Database

391

The Activity view lets you adapt the time interval you would like to display statistics

for. By default, ADW persists the historical information for service consumption for

eight days and does it in one-hour intervals. You can increase the retention time to a

value larger than these eight days and change the performance statistics collection

interval. Autonomous Database, just like the traditional Oracle Database, relies

on Automatic Workload Repository (AWR) tables to persist historical performance

statistics. The AWR tables are stored in the SYSAUX tablespace and belong to the SYS

schema. Open SQL Developer Web as ADMIN, and run the following query to display

the current AWR settings:

select

 extract(hour from snap_interval) interval_hours,

 snap_interval,

 extract(day from retention) retention_days,

 retention

from SYS.DBA_HIST_WR_CONTROL

where dbid=(select con_dbid from v$database);

The results are shown in Figure 7-30. The snap_interval and retention columns

are of the INTERVAL type so you can leverage the EXTRACT() function to print only the

part (days, hours, minutes, seconds) you are interested in.

Figure 7-29. ADW database Activity view

Chapter 7 autonomous Database

392

To alter the default retention time or the default statistics snapshot collection

interval, you would use the DBMS_WORKLOAD_REPOSITORY.MODIFY_SNAPSHOT_SETTINGS

procedure like this:

BEGIN

 DBMS_WORKLOAD_REPOSITORY.MODIFY_SNAPSHOT_SETTINGS(

 retention => 20160,

 interval => 60

);

END;

In this example, we increase the retention period to two weeks (14 days is equal

to the 20,160 minutes we use as the input to the retention parameter). Tune this

parameter wisely because the more you increase the retention period, the more storage

will be consumed in the SYSAUX tablespace for the AWR tables.

Accessing the Monitored SQL tab in the Activity view of the ADB Service Console

provides you with a list of actively executed and past SQL statements, as shown in

Figure 7-31.

Figure 7-30. Control information for the AWR

Figure 7-31. ADW SQL monitoring

Chapter 7 autonomous Database

393

You can inspect each individual SQL statement and learn about its Wait statistics,

I/O statistics, execution plan performance, and, if it applies, parallelism. To do so, on the

Monitored SQL tab, right-click a query you are interested in and choose the Show Details

option. There will be a new pop-up area displayed to you, as shown in Figure 7-32.

Figure 7-32. SQL execution details

You have learned how to monitor your database instance. It is time to bring our

attention back to the dimensions and fact data we loaded earlier into database tables. It’s

time to get in touch with the information stored in these database tables. Let’s execute

some interesting queries.

Chapter 7 autonomous Database

394

 Data Analytics
Collecting data is just one side of the story. It is more important to understand why

we actually do it. The data can tell you different information, sometimes expected and

sometimes surprising, about the business situation, objects, measurements, or events

the data represents. The traditional, probably the most-prevalent and well-established,

approach is to query a data set in an intentional search for various correlations, trends,

anomalies, or, actually even more common, report-ready aggregations such as quarterly

sales per business unit. The results are often subject to data visualizations, which are

helpful in illustrating what a large set of numbers truly says. Unless we are dealing with

standardized and routine reporting, the data analysis typically entails a large number

of ad hoc queries that are understood as queries that are not predefined and cannot

be determined before the particular query is executed. To help deal with such queries,

specialized constellations of denormalized database tables are employed. You’ve already

learned about the simplest and yet often sufficient star schema.

A star schema, as you are already familiar with, is a constellation of denormalized

database tables that is the foundation for building the so-called OLAP cubes. What

is an OLAP cube? We could say that it is a multidimensional structure that combines

dimensional attribute hierarchies with quantitative facts. Well, this may sound a bit

too sophisticated. From a practical point of view, it is convenient to say that an OLAP

cube is a higher-level construct, typically built on top of a star schema, that provides

a more abstract way of looking at data beyond the tabular structure underneath. We

are no longer thinking about dimension tables but talking about dimension attribute

hierarchies. In the context of this chapter, the corresponding OLAP cube is illustrated in

Figure 7-33. I have deliberately chosen to use three dimensions for the sample data in

this chapter because it makes it really easy to imagine the corresponding OLAP cube as

a three-dimensional coordinate system. Each dimension is a base for an axis line. Each

point in this coordinate system can be seen as a single fact entry that carries various

quantitative data.

Chapter 7 autonomous Database

395

OLAP cubes are not limited to a logical concept, but a database or data processing

platform can include an OLAP cube engine module that takes some burden of handling

selected aspects related to dimension hierarchy levels and lets you focus on more

business-oriented queries. The implementation of OLAP cubes can range from database

extensions such as Oracle Analytic Views, which rely on advanced SQL language

features, to a middleware-based business intelligence solutions, such as Oracle Business

Intelligence Suite, which supports a dedicated query language such as MDX. The OLAP

cube will help us understand some of the basic queries we are going to execute against a

star schema. First, however, we need to materialize a star schema.

The easiest way to produce a star schema is to run a SQL select query that basically

joins all dimension tables with the fact table like this:

SELECT FROM ROADEVENTS_FACT F

JOIN TIME_DIM T ON T.DAY_ID = F.TIME_DIM_ID

JOIN ROAD_DIM R ON R.SEGMENT_ID = F.ROAD_DIM_ID

JOIN EVENT_DIM E ON E.EVENT_ID = F.EVENT_DIM_ID

Figure 7-33. OLAP cube

Chapter 7 autonomous Database

396

To simplify future queries that will use more complex selection and filtering

conditions and avoid repeating the entire star schema SQL select query, it may be

convenient to incorporate the star schema query in a database object called a view. A

view is just a saved SQL query against a set of database tables or other views. It does

not store data physically but provides a predefined perspective on physical database

tables. Still, the use of views may sometimes mean the costly calculation of query results

dynamically. Knowing that typical ADW workloads are usually built on scheduled batch

data loading of a large footprint, after the data loads have been completed, we could

precompute the view and store data physically. For that purpose, we will use database

objects called materialized views.

As you recall, the database user SANDBOX_USER was granted the predefined dwrole

database role. This role, however, does not allow the users to create materialized views.

Let’s open SQL Developer Web, this time using the link for the ADMIN user, and add a new

privilege for the SANDBOX_USER by executing the GRANT statement.

GRANT CREATE MATERIALIZED VIEW TO SANDBOX_USER;

If you want, you can optionally verify the roles and privileges held by the SANDBOX_

USER by running these queries as the ADMIN user.

SELECT * FROM DBA_ROLE_PRIVS where grantee='SANDBOX_USER';

SELECT * FROM DBA_SYS_PRIVS where grantee='SANDBOX_USER';

We are ready to switch to the SQL Developer Web window for SANDBOX_USER and

execute the CREATE MATERIALIZED VIEW SQL DDL statement. Again, remember to

execute this query in the SANDBOX_USER SQL Developer Web window.

CREATE MATERIALIZED VIEW ROADEVENTS_STAR AS

SELECT * FROM ROADEVENTS_FACT F

JOIN TIME_DIM T ON T.DAY_ID = F.TIME_DIM_ID

JOIN ROAD_DIM R ON R.SEGMENT_ID = F.ROAD_DIM_ID

JOIN EVENT_DIM E ON E.EVENT_ID = F.EVENT_DIM_ID

You should receive the following message:

Materialized view ROADEVENTS_STAR created.

Chapter 7 autonomous Database

397

For the sake of this chapter, we have just created the materialized view over the

entire fact table. It is good to know that materialized views, in contrast to views, do

consume physical storage. For production use cases that involve large data sets, it

may be rather undesired to persist the entire star schema query as a materialized

view. The same applies to situations in which the data loads are incremental and of a

high frequency, because materialized views usually have to be refreshed immediately

after the underlying database tables change. In this context, best practice suggests

that materialized views are built after applying dimension filters and only for these

aggregations that are often used by the reporting engine.

We can query a materialized view just as an ordinary database table. Let’s issue a

SQL select statement that sums up all road event occurrences as well as the number of

people injured and killed and groups the results by the calendar year and the road event

class. Both the calendar year and the road event class are the topmost levels in their

dimensions. The query is shown here:

SELECT

 year_name, class_name,

 SUM(occurrence) total_occurrence,

 SUM(injured) sum_injured,

 SUM(killed) sum_killed

FROM ROADEVENTS_STAR

GROUP BY year_name, class_name

ORDER BY year_name, class_name;

The results are shown in Figure 7-34. We can immediately draw some initial

conclusions. For example, we can see that the numbers of accidents and accident

victims decreased in 2017 when compared to 2016. At the same time, the number of

reported traffic incidents increased a bit. This could lead us to the hypothesis that

increased police activity could lead to detecting more incidents, improving the safety on

the roads, and resulting in a lower number of accidents in 2017.

Chapter 7 autonomous Database

398

Figure 7-34. Aggregate query over a star schema

The query result consists of four rows that can be illustrated on the corresponding

OLAP cube, as shown in Figure 7-35. The query practically divides the original cube

into four subcubes that were divided based on the topmost dimension hierarchy levels

for the Time and Event dimensions. If we knew we were interested in analyzing traffic

incidents that took place in 2017 only, we would focus on this one particular subcube.

That kind of operation would be called dicing. The dicing operation produces a subcube

by filtering the results based on a range of values typically applied on a few dimensions.

Chapter 7 autonomous Database

399

Dicing is just one of a few types of OLAP cube operations you will encounter in the

world of business intelligence (BI). These are the most common types of BI operations:

• Slice and dice

• Drill-down and roll-up

• Pivot

While dicing uses range filters on one or more dimensions to create a subcube, the

slicing operation reduces the number of analyzed dimensions. You typically choose one

fixed value for a particular dimension and use it as a filter over the data set. Both slicing

and dicing are conceptually illustrated in Figure 7-36.

Figure 7-35. OLAP cube perspective on the query

Chapter 7 autonomous Database

400

Let’s slice the cube by eliminating the Time dimension. For example, we could be

interested in displaying the aggregation totals for the very precise date, let it be August

12, 2017. To do so, execute the second select query.

SELECT

 SUM(occurrence) total_occurrence,

 SUM(injured) sum_injured,

 SUM(killed) sum_killed

FROM ROADEVENTS_STAR

WHERE day_date=TO_DATE('20170812','YYYYMMDD');

The results are shown in Figure 7-37. There were 2,777 occurrences of accidents and

incidents altogether. The accidents caused 175 injured and 9 killed.

Figure 7-36. OLAP cube slice and dice

Figure 7-37. Slice operation

Chapter 7 autonomous Database

401

The third select query performed over the star schema materialized view is an

example of a drill-down operation. We are still using the previous slice of the cube. We

add to it the GROUP BY clause, which effectively presents a more granular aggregate split.

The ordering is aligned with the Event dimension hierarchy. The event class (the class_

name column) splits into event categories (the category_name column) that subsequently

split into event types (the event_name column). The intention is to make the results

clearer and easier to understand. Now, issue the third query.

SELECT class_name, category_name, event_name,

 SUM(occurrence) total_occurrence,

 SUM(injured) sum_injured,

 SUM(killed) sum_killed

FROM ROADEVENTS_STAR

WHERE day_date=TO_DATE('20170812','YYYYMMDD')

GROUP BY class_name, category_name, event_name

ORDER BY class_name, category_name, event_name;

A more detailed split that is the result of the query you’ve just issued is displayed

in Figure 7-38. Although we present the totals for each fact measurement, nothing

is stopping you from making additional ad hoc calculations such as the averages or

injured-to-killed ratio for each event type. Remember that we have worked on a slice of a

cube, and the results are given for a single day only.

Figure 7-38. Drill-down operation

Chapter 7 autonomous Database

402

The fourth SQL statement is an example of a dicing operation. We are applying filters

on each dimension to create a subcube. The Time dimension is limited to August 2017,

Event dimension to the “traffic rules” Category, and the Road dimension only to these

road segments that are located in three listed voivodeships. Execute the following select

query:

SELECT event_name, segment_voivodeship,

 SUM(occurrence) occurrence_in_201708

FROM ROADEVENTS_STAR

WHERE

 month_of_year=8 and year_name='CY2017' and

 category_name='traffic rules' and

 segment_voivodeship

 in ('Masovian','Subcarpathian','Lesser Poland')

GROUP BY event_name, segment_voivodeship

ORDER BY event_name, segment_voivodeship;

Figure 7-39 presents the sum of various traffic rules road incidents additionally split

based on their location. We can see, for instance, that there were 2,835 speeding traffic

incidents reported on roads in the Masovian voivodeship in August 2017.

Figure 7-39. Dice operation

Chapter 7 autonomous Database

403

What we are doing is creating ad hoc queries to explore and detect various

characteristics of this particular data set. In the case of ad hoc queries, as long as we can

read and understand the results, the formatting is not so important. This will drastically

change when we are tasked with preparing the results for reporting. The aggregates

presented in Figure 7-39 are based on a two-dimensional subdice. The Time dimension

is no longer considered. Having two dimensions, we could imagine a report that relies

on each remaining dimension for its two-dimensional structure. The x-axis could be

based on the Road dimension while the y-axis on the Event dimension. Looking at the

results of the previous query, the only thing remaining is to apply the pivot operation.

The pivot operation basically rotates rows into columns, applying additional aggregation

if required. Values that were stored in the row fields of a particular column can become

a new set of columns. Oracle Database features a specialized PIVOT clause to perform

pivoting. This is the fifth query to be executed:

SELECT

 *
FROM

(

 SELECT

 event_name,

 segment_voivodeship,

 SUM(occurrence) occurrence_in_201708

 FROM

 ROADEVENTS_STAR

 WHERE

 month_of_year = 8 AND year_name = 'CY2017'

 AND category_name = 'traffic rules'

 AND segment_voivodeship

 IN ('Masovian', 'Subcarpathian', 'Lesser Poland')

 GROUP BY event_name, segment_voivodeship

 ORDER BY event_name, segment_voivodeship

) PIVOT (

 SUM (occurrence_in_201708)

 FOR (segment_voivodeship)

 IN (

 'Masovian' as masovian,

Chapter 7 autonomous Database

404

 'Subcarpathian' as subcarpathian,

 'Lesser Poland' as lesser_poland

)

)

Figure 7-40 shows the report-ready results of the pivot operation applied on the

subcube. The values presented as row fields in the previous segment_voivodeship

column became new columns. The previous occurrence_in_201708 column was

removed, and the values were distributed accordingly to the new layout. In this case,

because of the well-grained grouping levels, no additional aggregation took place.

Figure 7-40. Pivot operation

The operations presented are just the tip of the iceberg. Oracle Autonomous

Database supports many specialized clauses that let you properly structure, distribute,

aggregate, and rank the results, but this is beyond the scope of this book. Oracle

Database analytical views can be used to perform more advanced dimensional queries

in a hierarchy-aware way and include embedded calculations over aggregates available

in the underlying fact table.

Every Autonomous Data Warehouse instance comes with a feature called Oracle

Machine Learning (OML), which is a web-based, interactive, notebook-oriented data

visualization and data analytics tool based on the open source Apache Zeppelin project.

For simple visualization use cases, you can easily use SQL to issue queries and, using

a few clicks, prepare various charts. For example, Figure 7-41 shows how to display a

line chart that illustrates the sum of car accident victims in Poland in 2017 grouped

by the traffic accident category. As a reminder, the data you see is purely artificial and

generated by me solely for the purpose of this book.

Chapter 7 autonomous Database

405

Figure 7-41. Oracle Machine Learning Zeppelin-based visualizations

Notebooks can be arranged in a way that resembles multi paragraph reports, like the

one shown in Figure 7-42 that combines both a pie chart and a corresponding data table.

Both views illustrate the daily average of people injured in 2017 in a voivodeship-based

split.

Chapter 7 autonomous Database

406

You can access the OML Administration page from the Autonomous Data

Warehouse Service Console on the Administration page. Here, you are able to allow the

existing database users to work with OML notebooks. To find out more, please refer to

the documentation.

The Autonomous Data Warehouse instance can be easily registered as a data source

for Oracle Analytics Cloud that features with a much richer set of available charts.

Figure 7- 43 presents a Radar Area chart of people injured in 2017 on the roads of GP type.

Each different angle corresponds to one particular voivodeship. The lower is the number

of injured people on GP roads in a given voivodeship; the smaller is the blue area on this

Figure 7-42. OML-based reports

Chapter 7 autonomous Database

407

particular angle. There are plenty of things you can build using Analytics Cloud, and

you perform interactive analysis and dynamically adapt the charts to come to an ideal

dashboard in the context of your particular reporting scenario.

Figure 7-43. Oracle Analytics Cloud

Discussing business intelligence operations, data mining algorithms, and different

visualization techniques like these supported by Zeppelin-based ADB extensions as well

as Oracle Analytics Cloud is beyond the scope of this book. There is a broad range of

materials available on the Internet, so feel free to explore.

Chapter 7 autonomous Database

408

 Cleanup
We can now terminate the database instance because we won’t need it beyond this point.

To shut down and terminate the ADW instance, you can execute the following command:

$ ADW_OCID=`oci db autonomous-database list --query "data[?\"display-

name\"=='road-adw'] | [0].id" --raw-output`

$ echo $ADW_OCID

ocid1.autonomousdatabase.oc1.eu-frankfurt-1.ab......763psq

$ oci db autonomous-database delete --autonomous-database-id "$ADW_OCID"

--wait-for-state TERMINATED

Are you sure you want to delete this resource? [y/N]: y

Action completed. Waiting until the resource has entered state: TERMINATED

Similarly, use the OCI CLI to remove all objects and delete the object storage bucket

in which we originally stored the raw input data for the database data load.

$ oci os object bulk-delete -bn roadadw-load

WARNING: This command will delete 7 objects. Are you sure you want to

continue? [y/N]: y

$ oci os bucket delete -bn roadadw-load

Are you sure you want to delete this resource? [y/N]: y

 Summary
This chapter was a brief and fast-paced introduction to RDBMS-backed data

warehousing and dimension-oriented data analytics. In the age of the fully managed

cloud- based Autonomous Database, we were able to rapidly launch a data warehouse

instance and, after some basic setup, move straight to building data-oriented solutions.

This is what managed cloud platforms are all about: focusing on solving problems

with minimal management effort by delegating these housekeeping tasks to the cloud

platform. In the course of subsequent sections, you learned how to provision an instance

of an autonomous database, access SQL Developer Web as ADMIN, create regular

database users, load data from object storage to database tables, and understand the star

schema and its role in business intelligence operations. Next, you familiarized yourself

with database monitoring. Finally, you queried data in a number of ways and were

introduced to data visualization options available in Oracle Cloud.

Chapter 7 autonomous Database

409
© Michał Tomasz Jakóbczyk 2020
M. T. Jakóbczyk, Practical Oracle Cloud Infrastructure, https://doi.org/10.1007/978-1-4842-5506-3_8

CHAPTER 8

Oracle Container Engine
for Kubernetes
In this chapter, we are going to deal with application containers, which have

revolutionized the contemporary software world. Containers have impacted the way

we build, ship, and run applications and therefore have largely changed the process of

software development. They empowered the new architectural style oriented around

systems composed of a large number of highly specialized, autonomous, and usually

small-in-size applications called microservices. It is no exaggeration to say that, on top

of application containers, there has emerged a new ecosystem of standards, platforms,

components, tools, libraries, protocols, and services. The ecosystem is truly immense in

scope, powered by a broad open source community and provided with rich corporate

sponsorship.

The first section in this chapter briefly explains what containers are and guides you

through the most important tasks related to containerizing an application and storing

container images in the Oracle Container Image Registry (OCIR). The second section

discusses the need for container orchestration and introduces you to Oracle Kubernetes

Engine (OKE), a managed Kubernetes service available on Oracle Cloud Infrastructure.

 Containers
A container is a portable and shippable unit of software packaged with all its dependencies.

Let’s explore this definition by looking closer at the three core characteristics of containers.

• Self-contained

• Isolated

• Shippable

410

Each container is in principle self-contained. A service or an application wrapped

inside a container is provided with all its dependencies such as software binaries,

configuration files, libraries, environment variables, and, no matter how weird it may

sound at first glance, the entire operating system. Even though there might be hundreds

of containers running on the same bare-metal or virtual machine, each of them

provides an impression of a fully isolated and exclusive environment to an application

it encapsulates. In other words, an application inside any given container thinks it is

running within a dedicated machine, no matter how many other containers coexist

on the same host machine. Containers are considered easily shippable across different

host machines that may even use varying host operating systems as long as they are all

supporting the same container runtime. Figure 8-1 illustrates these three characteristics

conceptually.

Figure 8-1. Core container characteristics

If you’ve never heard about containers and are new to the topic, you will probably

wonder how it is all possible from a technical point of view. Furthermore, how do

containers actually differ from virtual machines? Contemporary container runtimes

originated from within the Linux ecosystem and leverage Linux kernel features such

as namespaces, control groups, or chroot commands to implement filesystem,

process, network, and resource isolation. No matter which container engine you

eventually choose, whether be Docker, rkt, or cri-o, you can be sure they all use the

Chapter 8 OraCle COntainer engine fOr Kubernetes

411

same aforementioned Linux kernel features. In this context, it becomes clear that all

containers running on the same host, even though fully isolated, use the host’s Linux

kernel. In terms of reusability, there is something even more impactful, namely, layers.

Containers use filesystem layers that are stacked on top of other layers. The base layers

“at the bottom” ship the entire operating system. It may sound heavy, but in the world

of containers, you will often encounter very lightweight Linux distributions such as

CoreOS Container Linux or Alpine Linux. On top of that, additional layers usually bring

application runtimes, for example, Java Virtual Machine, Python, or Node.js. Earlier,

further layers can ship required libraries like Python Flask. Finally, the topmost layers

contain application binaries often supplemented with injected configuration files.

All these layers are read-only, which allows multiple containers to share them. Every

container comes with a dedicated writable layer to hold all changes done across the

lifetime by the application of any other components within the container. Read-only

layers are logically grouped into container images that can be shared across many

machines. Each image is a self-contained entity that can serve as a base for multiple

running containers. You can have hundreds of containers based on the same image

effectively consuming just as much storage as if you were running only a single

container.

Figure 8-2. Container layers

Chapter 8 OraCle COntainer engine fOr Kubernetes

412

Figure 8-2 illustrates the relation between individual images and containers.

There are three containers called uuid-1, uuid-2, and uuid-3, all built using the same

uuid:1.0 image. The uuid:1.0 image is a custom-built image that basically ships some

application code and configuration files. The image is built on top of a downloaded

python:3-alpine image that installs Python 3 on top of a base operating system image

called alpine:3.10. Applications within each of the three containers think that they

are running on separate hosts. Yet, they all share the host machine Linux kernel and

read-only layers. There have been some voices across the community saying that not all

Python applications are capable of running on Alpine Linux because of some missing

distribution-specific dependencies. To address these concerns, you could, for instance,

consider running more demanding Python apps using images that rely not on python:3-

alpine but on a Debian-based python:3-stretch image.

Both kernel-level isolation combined with the reuse of kernel and various filesystem

layers make containers considerably lighter in use when compared to virtual machines.

Similarly, it is much easier to ship a container to another machine than to migrate

the entire virtual machine. But what does it physically mean to ship a container? You

have learned that any particular container requires an image that consists of read-only

filesystem layers. In the case of stateless applications, shipping a container means

nothing more than stopping an existing container and running another one, based

on the same image and using the same runtime configuration, this time on another

machine. It becomes clear that images have to be made available in some kind of image

registry accessible from all host machines with the container runtime. The container

platform would then pull an image from the image registry, which effectively means

downloading all required filesystem layers and corresponding metadata, as illustrated

in Figure 8-3.

Chapter 8 OraCle COntainer engine fOr Kubernetes

413

Applications always evolve during their life span. To track this, evolution application

releases are versioned. The same applies to container images. If you look closer at the

previous figures, you will see the version suffixes such as 1.0, 3-alpine, or 3:10. We

call them tags. Container images are tagged mainly to denote different variants or the

release chronology of a particular image. For example, let’s assume you are publishing a

new minor version of an image that encapsulates updated binaries of an UUID service.

If the previous image version was tagged as uuid:1.0, the updated image version could

be tagged with uuid:1.1. If it happened that a Python-based application was not fast

enough, you could additionally implement a Golang-based alternative and publish it as

a uuid:1.0-golang variant.

Knowing all the basic components, we are ready to outline the development process

for a containerized application. Depending on the situation, you will either have to

containerize an existing application or incorporate containerization already from the

beginning as an automated process while developing a new application. To containerize

an application, you need to carefully identify all dependencies and make choices on the

entire execution environment including the operating system an application would think

it is running on. Based on these decisions, you pick an existing image or, if it doesn’t

exist, start building it on your own. This will be the base image for your application-

specific image. As soon as the base image is ready, you can finally start building an

Figure 8-3. Pulling an image from an image registry

Chapter 8 OraCle COntainer engine fOr Kubernetes

414

application-specific image on top of the selected base image. You usually do it by adding

the application binaries optionally with some static, application-specific configuration

files and by setting default values for any environment variables used by the application.

These environment variables may then be overridden for each individual container.

Another, a bit more sophisticated way for a containerized application is to fetch

its runtime configuration artifacts from a decoupled, external config source. The

application-specific image is self-contained. It can be uploaded to an image registry. We

call this activity pushing an image. An image can then be pulled from the registry to run

containers and execute automated tests against them on machines that constitute a test

environment for a given moment. After test pipelines have been completed, containers

are destroyed. Furthermore, if test machines are cloud-based, following test completion,

they can be terminated to eliminate idle time. Afterward, successfully validated

container images are properly tagged and pushed into another image registry, this time

intended for production distribution. Some reference this as image promotion. In the

last step, the newest images are used to replace or launch new containers on production

machines. The entire process is conceptually shown in Figure 8-4.

Figure 8-4. Developing containerized applications

The entire development process is usually fully automated. Developers check

their code into version control systems such as Git, which triggers the test image build,

deployment, and testing. If the image validates successfully, it is automatically tagged

Chapter 8 OraCle COntainer engine fOr Kubernetes

415

and pushed to the distribution image registry. Another set of automation rules can

replace older containers in the production environment with the newer containers that

are based on the newest image.

This section has equipped you with some base knowledge in the field of containers.

We are ready now to apply these concepts in practice. To do so, we are going to

containerize the UUID service that was covered in Chapter 2.

 Containerize an Application
There are a few container runtimes on the market. Just to name a few, we could list

containerd or rkt or cri-o. As a matter of fact, this is quite a dynamic scene, and

things are rapidly changing nearly every month. Luckily, there have been some joint

standardization efforts put in place by the community to bring some structure to this

chaos of creativity and reuse some common components across various runtimes. One

of the most popular container runtimes is containerd. It was taken from the previously

monolithic Docker Engine and was donated to the community as an open source project

governed by the Cloud Native Computing Foundation (CNCF). Docker alone actually

pioneered the use of Linux containers, first using an existing set of Linux containers

tool (LXC) and then switching to a custom-built, in-house platform. Docker is probably

the most popular container engine technology at the moment and the leading provider

of tools used to containerize applications. In this section, we are going to use Docker

tools to containerize the existing UUID service application we worked on earlier as

part of the Chapter 2 exercise. Back then we ran it as a Linux systemd service on two

compute instance running in Oracle Cloud Infrastructure. That time, we hosted just one

application instance on each compute instance. Now, we are going to build a container

image that can be run by any number of containers, in this way providing multiple UUID

API instances on a single machine, as shown in Figure 8-5. Each application will still

think it is running alone on a dedicated host, even though, in reality, it is sharing the

underlying image layers and the Linux kernel with all other containers based on the

same image and running on the same machine. By containerizing the application, you

will unlock the possibility to scale the entire UUID API horizontally out by adding more

containers and hosts with the container runtime.

Chapter 8 OraCle COntainer engine fOr Kubernetes

416

Note the code snippets from this book have been tested on macOs and
Windows subsystem for linux. Moreover, all commands should work on major
linux distributions. if you are using Windows and do not want to use Windows
subsystem for linux, you can always run linux on a VM. furthermore, the majority
of code snippets may also work in git bash on Windows.

To build an image, you will need a developer machine with Docker tools. In the course of

this chapter, we are going to provision and use a temporary development compute instance

with all the required tools installed. I recommend that you follow these steps because that

will make it easier to use the code snippets and avoid platform-specific discrepancies.

 Development Instance in the Cloud

Let’s provision a single compute instance based on the newest CentOS 7 platform image.

I have already prepared the infrastructure code. You will find it in the chapter08/1-

devmachine directory. The code structure is compliant with what we’ve already discussed

Figure 8-5. Containerized application scalability

Chapter 8 OraCle COntainer engine fOr Kubernetes

417

in all previous chapters. There is one module called devmachine where the instance is

defined with corresponding subnet-level cloud networking resources. The VCN alone is

traditionally defined outside of the module in the top-level vcn.tf file.

$ cd ~/git

$ cd oci-book/chapter08/1-devmachine

$ find . \(-name "*.tf" -o -name "*.yaml" \) | sort

./devmachine/cloud-init/devvm.config.yaml

./devmachine/compute.tf

./devmachine/vars.tf

./devmachine/vcn.tf

./modules.tf

./provider.tf

./vars.tf

./vcn.tf

To perform the initial instance setup and provide you with all the required

development tools, we use the cloud-config file, as shown in Listing 8-1.

Listing 8-1. 1-devmachine/cloud-init/devvm.config.yaml

#cloud-config

yum_repos:

 docker-ce-stable:

 name: Docker CE Stable - $basearch

 baseurl: https://download.docker.com/linux/centos/7/$basearch/stable

 enabled: true

 ...

 kubernetes:

 name: Kubernetes

 baseurl: https://packages.cloud.google.com/yum/repos/kubernetes-

el7- x86_64

 enabled: true

 ...

Chapter 8 OraCle COntainer engine fOr Kubernetes

418

packages:

 - git

 - docker-ce

 - docker-ce-cli

 - containerd.io

 - kubectl

runcmd:

 - [systemctl, enable, docker]

 - [systemctl, start, docker]

 - [usermod, -aG, docker, opc]

 - [mkdir, "/home/opc/.kube"]

 - [chown, "opc:opc", "/home/opc/.kube"]

 - [firewall-offline-cmd, "--add-port=5010-5019/tcp"]

 - [systemctl, restart, firewalld]

final_message: "DEV machine is running, after $UPTIME seconds"

Based on this cloud-config file, the cloud-init will add two external Yum repositories

and install a Git client, the Docker Community Edition (CE) toolkit, and the kubectl

command-line management tool for Kubernetes. You will learn about kubectl and

Kubernetes in the second part of this chapter.

It is time to provision the development instance. On your local machine where

you have installed and configured Terraform, please make sure you have sourced

the relevant environment variables, which begin with TF_VAR_, required by your OCI

provider. If they are not set, you might need to run the following:

$ source ~/tfvars.env.sh

Now, execute the following commands:

$ terraform init

Initializing modules...

- devmachine in devmachine

Initializing the backend...

Initializing provider plugins...

- Checking for available provider plugins...

- Downloading plugin for provider "oci" (terraform-providers/oci) 3.30.0...

Chapter 8 OraCle COntainer engine fOr Kubernetes

419

* provider.oci: version = "~> 3.30"

Terraform has been successfully initialized!

$ terraform apply

data.oci_identity_availability_domains.ads: Refreshing state...

data.oci_core_images.centos_image: Refreshing state...

Terraform will perform the following actions:

 # oci_core_internet_gateway.igw will be created

 # oci_core_virtual_network.vcn will be created

 # module.devmachine.oci_core_instance.dev_vm will be created

 # module.devmachine.oci_core_route_table.dev_rt will be created

 # module.devmachine.oci_core_security_list.dev_sl will be created

 # module.devmachine.oci_core_subnet.dev_net will be created

Plan: 6 to add, 0 to change, 0 to destroy.

Do you want to perform these actions?

 Terraform will perform the actions described earlier.

 Only 'yes' will be accepted to approve.

 Enter a value: yes

 ...

 Apply complete! Resources: 6 added, 0 changed, 0 destroyed.

Outputs:

dev_machine_image_name = CentOS-7-2019.06.19-0

dev_machine_public_ip = 130.61.84.182

$ DEV_VM_PUBLIC_IP=`terraform output dev_machine_public_ip`

In my case, the instance has been provisioned in the third fault domain of the third

availability domain in the Frankfurt region, as shown in Figure 8-5.

Chapter 8 OraCle COntainer engine fOr Kubernetes

420

Wait a few seconds after the developer instance has been reported as Running to

allow the sshd daemon to start and connect to the machine. Next, as always, you may

need to wait one or two minutes until cloud-init has completed all the tasks defined

in the cloud-config file. You can inspect cloud-init.log from time to time to verify

whether cloud-init has finished.

$ ssh -i ~/.ssh/oci_id_rsa opc@$DEV_VM_PUBLIC_IP

[opc@dev-vm]$ sudo cat /var/log/cloud-init.log | grep "DEV machine is

running"

2019-06-22 12:46:49,899 - util.py[DEBUG]: DEV machine is running, after

116.90 seconds

[opc@dev-vm]$ exit

From now on, whenever you see the [opc@dev-vm]$ command prompt in any of the

subsequent code snippets, it will be assumed that you are on the developer instance.

Note the Oracle Cloud infrastructure marketplace comes with a more
comprehensive prebuilt Oracle Cloud Developer image where there are many other
tools installed out of the box. Yet, in this chapter, we are using a more lightweight
and tailored custom-built developer instance that you launched using the supplied
infrastructure code.

To be able to run Docker as a regular user, the cloud-init has added the opc user to

the docker group. Reconnect to the developer machine to get the group assignment in

place.

$ ssh -i ~/.ssh/oci_id_rsa opc@$DEV_VM_PUBLIC_IP

We are going to continue working on this in the next section.

Figure 8-6. Viewing the developer VM in the OCI Console

Chapter 8 OraCle COntainer engine fOr Kubernetes

421

 Docker Runtime

Let’s explore a bit the Docker tools installed on the developer instance. At the beginning

of this chapter, you learned about containers and container images. To list the images

on a given machine, issue the docker images command. To list the running containers,

issue the docker ps command, like this:

[opc@dev-vm]$ docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

[opc@dev-vm]$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

Perfect. At this moment, there are no images and no containers on this machine.

What about learning something more about the Docker engine and the underlying

container runtime? Issue the docker info command.

[opc@dev-vm]$ docker info

...

Server Version: 18.09.6

Storage Driver: overlay2

 Backing Filesystem: xfs

 Supports d_type: true

 Native Overlay Diff: true

...

Runtimes: runc

Default Runtime: runc

...

Kernel Version: 3.10.0-957.21.3.el7.x86_64

...

Docker Root Dir: /var/lib/docker

...

Earlier, I spoke briefly about the fact that all containers use the kernel of their

host machine. This is why the kernel is still important for Docker Engine, and you can

find its precise version listed as the Kernel Version entry in the output of the docker

info command. Among various information entries, you will also see the Runtimes

entry. Docker uses the container runtime called containerd. Here, however, we can

see something called runc as the Runtimes entry. Nothing is wrong. The runc is a

Chapter 8 OraCle COntainer engine fOr Kubernetes

422

component responsible for running containers based on the standardized Open

Container Initiative (OCI) specification. The containerd container runtime uses the

runc under the hood and adds more features around it. Another interesting entry refers

to the way Docker works with the filesystem layers that are combined to serve as the

filesystem seen by your containerized application. Stacked on top of the read-only layers,

there is a writable container layer. If an application makes any changes to the filesystem,

these will be resembled in the writable layer only. It is the job of the storage driver to

manage these layers, taking into consideration the characteristics of the underlying

physical filesystem that backs the Docker root directory on the host. There are a few

storage drivers available, each with different strengths and weaknesses. We are using

the currently preferred storage driver called overlay2 backed by the xfs filesystem. The

filesystem layers hierarchy is located in the /var/lib/docker/overlay2 subdirectory.

While containers are running, you should be able to find how the layers are stacked on

top of each other using the mount command. If this looks a bit complex at first glance,

there is no need to worry. We are not going to work with these settings. I just wanted you

to get some practical overview of what had been conceptually discussed about layers at

the beginning of this chapter.

 Docker Images

Our goal is to build an image that encapsulates the UUID service application, including

application dependencies (Python 3 and the Flask microframework) and default values

for the required environment variables (e.g., FLASK_APP). First, we have to choose the

appropriate base image for the application-specific image that we are about to build.

Luckily, there are official base images for Python on Docker Hub, which is probably the

largest library for container images. Both community-driven open source projects and

independent software vendors publish their ready-for-distribution images to Docker

Hub. You can find a large set of images that bundle different Python versions on various

platforms at https://hub.docker.com/_/python, as shown in Figure 8-7.

Chapter 8 OraCle COntainer engine fOr Kubernetes

https://hub.docker.com/_/python

423

For demonstrational purpose, we will choose Python 3 on Alpine Linux, the variant

available under the python:3-alpine tag. How would our Docker engine, which is

running on an instance in the Frankfurt region of Oracle Cloud Infrastructure, actually

know how to fetch this image? If you run the docker info command again, you should

see the Registry entry at the bottom of the output.

[opc@dev-vm]$ docker info

...

Registry: https://index.docker.io/v1

...

Docker CE comes with a preconfigured link to the Docker Hub container image

registry by default. Based on the security rules used by the VCN subnet to which the

compute instance is attached, the instance does have free outbound connectivity to

the Internet that effectively allows the instance to download container images from

Docker Hub.

So far so good. We know the name of the base image. Now, it is time to create the

custom image that adds the Flask microframework, sets a few default environment

variables, and tells the container runtime to execute the app.py file, which is the

implementation of the UUID API. To instruct Docker how to build a new image,

Figure 8-7. Official Python images on Docker Hub

Chapter 8 OraCle COntainer engine fOr Kubernetes

424

you use a Dockerfile, which basically consists of the sequence of commands that are

used to build the given image.

First, we are going to clone the Git repository with the code for this book again, this

time on the developer instance.

[opc@dev-vm]$ git clone https://github.com/mtjakobczyk/oci-book.git

[opc@dev-vm]$ cd oci-book/chapter08/2-docker/

[opc@dev-vm]$ cd uuid-service/

[opc@dev-vm]$ ls -1

app.py

Dockerfile

requirements.txt

The chapter08/2-docker/uuid-service directory contains three files.

• app.py

• Dockerfile

• requirements.txt

The app.py file is identical to the one we used in Chapter 2. This is basically the

implementation of the UUID API. As per Python conventions, the requirements.txt file

holds a list of Python packages that are required by our application and will be installed

using the pip tool. As I mentioned a moment ago, the Dockerfile is used to build an

image. Listing 8-2 shows the Dockerfile for our image.

Listing 8-2. Dockerfile

FROM python:3-alpine

ENV FLASK_APP /usr/src/app/app.py

ENV FLASK_ENV development

ENV FLASK_DEBUG 0

EXPOSE 5000

WORKDIR /usr/src/app

COPY requirements.txt ./

RUN pip install --no-cache-dir -r requirements.txt

COPY . .

CMD ["flask", "run", "--host=0.0.0.0"]

Chapter 8 OraCle COntainer engine fOr Kubernetes

425

The Dockerfile contains a list of instructions that are executed in a declared

sequence. The first instruction is always the FROM instruction and defines the base

image we want to use for the newly built image. As discussed earlier, we are going to

leverage one of the offical Python images available in the Docker Hub image registry

called python:3-alpine. The three subsequent ENV instructions set three environment

variables used by the Flask microframework development web server. FLASK_APP points

to the path of the API implementation, while FLASK_ENV and FLASK_DEBUG tune the

output of the server. The EXPOSE instruction denotes port 5000, which is the default port

used by the Flask server to listen for incoming requests. The role of this instruction is

mainly informational because the port exposure is set only when you run containers.

The WORKDIR instruction sets the working directory within the virtual container

filesystem for the upcoming COPY, RUN, and CMD instructions. The first occurrence of

the COPY instruction creates an image filesystem layer with the requirements.txt file

copied from the developer machine. The RUN command executes the pip install

command, which effectively installs the Flask microframework. The results are persisted

as another filesystem layer. The second occurrence of the COPY command brings the

app.py script to the container image as yet another filesystem layer. All in all, each

instruction produces a filesystem layer. Some of these layers are temporary, while the

others are included in the final container image. The very last instruction, namely, the

CMD instruction, in contrast to the previous RUN instruction, is not executed and, in this

way, does not produce any additional image layer that would be based on the results

of the given command. The role of the CMD instruction is to tell the Docker engine

what command to execute for each newly created container that will be launched

using this image. In our case, every newly created container will basically execute

the Flask microframework development web server using the flask run command.

Consequently, the Flask server will expose the API implemented in the app.py file

whose path is set in the FLASK_APP environment variable.

Chapter 8 OraCle COntainer engine fOr Kubernetes

426

To trigger the image build process, use the docker build command. The -t

parameter sets the tag for the newly built image. Do not forget to include the dot sign

at the end to instruct the docker build command to search for the Dockerfile in the

current working directory.

[opc@dev-vm]$ docker build -t uuid:1.0 .

Sending build context to Docker daemon 4.608kB

Step 1/10 : FROM python:3-alpine

3-alpine: Pulling from library/python

e7c96db7181b: Pull complete

799a5534f213: Pull complete

913b50bbe755: Pull complete

11154abc6081: Pull complete

c805e63f69fe: Pull complete

...

Status: Downloaded newer image for python:3-alpine

...

Step 2/10 : ENV FLASK_APP /usr/src/app/app.py

...

Step 3/10 : ENV FLASK_ENV development

...

Step 4/10 : ENV FLASK_DEBUG 0

...

Step 5/10 : EXPOSE 5000

...

Step 6/10 : WORKDIR /usr/src/app

...

Step 7/10 : COPY requirements.txt ./

...

Step 8/10 : RUN pip install --no-cache-dir -r requirements.txt

...

Successfully installed Flask-1.0.2 Jinja2-2.10.1 MarkupSafe-1.1.1

Werkzeug-0.15.4 click-7.0 itsdangerous-1.1.0

...

Step 9/10 : COPY . .

...

Chapter 8 OraCle COntainer engine fOr Kubernetes

427

Step 10/10 : CMD ["flask", "run", "--host=0.0.0.0"]

...

Successfully built b16f04d1bb7f

Successfully tagged uuid:1.0

You can now use the docker images command, optionally with the --format

parameter to filter the output, to list the images.

[opc@dev-vm]$ docker images --format "table {{.Repository}}\t{{.Tag}}\t{{.

ID}}\t{{.Size}}"

REPOSITORY TAG IMAGE ID SIZE

uuid 1.0 b16f04d1bb7f 96.7MB

python 3-alpine fe3ef29c73f3 87MB

You should see two top-level images.

• uuid:1.0

• python:3-alpine

We mentioned python:3-alpine a few times before. This is the base image. It was

downloaded from the Docker Hub image registry. It is 87MB and consists of some

intermediary layers that are not shown by default. uuid:1.0 is the image we have just

built on top of the base image. It adds the Flask microframework, sets three environment

variables, and adds the app.py application. The size you see (96.7MB) is slightly

misleading. This is the total size that includes the size of the base image. The layers we

added take just 9.7MB (96.7MB – 87MB).

To display the history of how the image was built and, thus, all layers including

transient intermediate layers, you can issue the docker history command, as shown in

Figure 8-8.

Chapter 8 OraCle COntainer engine fOr Kubernetes

428

With a new image in place, we can proceed and run containers.

 Running Containers

Images alone can be simply seen as logically associated read-only filesystem layers. To

be able to use containerized applications, you have to launch one or more containers

based on a particular image. You do this using the docker run command. The -d

parameter runs the container as a detached process in the background and effectively

does not block the terminal. Even though the Dockerfile declares port 5000 as the one

exposed by the image, you still need to map a chosen host port to that port for each

created container. You do this using the -p parameter. We are free to override or set

additional environment variables using one or more -e parameters. You may remember

that the UUID API returns the UUID_GENERATOR_NAME environment variable value as the

generator field in the response. For each container we are about to launch, we will use

a different value that is identical to the name of the container that is set with the --name

parameter.

The exercises in Chapter 2 helped you to run a single instance of the UUID API as a

systemd service on each of the two hosts. This time, we will run a few instances of the

same application, binding them to different ports on the development instance like this:

Figure 8-8. Docker image top-level and intermediate images

Chapter 8 OraCle COntainer engine fOr Kubernetes

429

[opc@dev-vm]$ docker run -d -p 5011:5000 -e "UUID_GENERATOR_NAME=uuid-1"

--name uuid-1 uuid:1.0

d6e9112b0950.........40adc3

[opc@dev-vm]$ docker run -d -p 5012:5000 -e "UUID_GENERATOR_NAME=uuid-2"

--name uuid-2 uuid:1.0

224256288f19.........d63b8c

[opc@dev-vm]$ docker run -d -p 5013:5000 -e "UUID_GENERATOR_NAME=uuid-3"

--name uuid-3 uuid:1.0

b15d1d26614c.........45b8dd

To list running containers, you can use the docker ps command.

[opc@dev-vm]$ docker ps --format "table {{.ID}}\t{{.Image}}\t{{.

Names}}\t{{.Status}}\t{{.Ports}}"

CONTAINER ID IMAGE NAMES STATUS PORTS

b15d1d26614c uuid:1.0 uuid-3 Up 3 min 0.0.0.0:5013->5000/tcp

224256288f19 uuid:1.0 uuid-2 Up 3 min 0.0.0.0:5012->5000/tcp

d6e9112b0950 uuid:1.0 uuid-1 Up 3 min 0.0.0.0:5011->5000/tcp

Now, let’s test the UUID API on each of the containers.

[opc@dev-vm]$ curl 127.0.0.1:5011/identifiers

{

 "generator":"uuid-1",

 "uuid":"d89d68bf-c093-4774-ab0e-0089674c184e"

}

[opc@dev-vm]$ curl 127.0.0.1:5012/identifiers

{

 "generator":"uuid-2",

 "uuid":"e141eef7-e578-4272-934b-68b48b6e146c"

}

[opc@dev-vm]$ curl 127.0.0.1:5013/identifiers

{

 "generator":"uuid-3",

 "uuid":"52ea3c08-adf2-452b-bd28-ef7b26aa2fc2"

}

Chapter 8 OraCle COntainer engine fOr Kubernetes

430

Because we are running the dev-vm compute instance on Oracle Cloud

Infrastructure, you may want to test containerized UUID APIs by making calls from your

local machine using the instance’s public IP. To do so, you have to add an ingress security

rule that allows the inbound traffic on ports 5011–5013. The infrastructure related to

dev-vm was provisioned using Terraform. To add new ingress security rules, you would

need to do it in the dev_sl resource in the devmachine/vcn.tf infrastructure code file.

We discussed security rules in Chapters 2 and 6.

We have successfully validated the newly built image by instantiating three

containers and testing their APIs. You can now exit from the developer instance console.

[opc@dev-vm]$ exit

The uuid:1.0 image is currently stored in our local image registry on the

development instance. This kind of local registry is perfectly fine for the tests we’ve just

conducted but cannot serve as a distribution registry.

 Container Registry
In theory, you could push the newly built image from your local image registry on

the developer instance to one of the public registries in the Internet such as Docker

Hub. Yet, you will often prefer to keep all custom images in some kind of a private

registry, invisible by the general public, that is additionally geographically close to your

target infrastructure in which the containers run. Every Oracle Cloud Infrastructure

tenancy comes with an image registry that is capable of storing both private and public

repositories. Oracle Cloud Infrastructure Registry (OCIR) is fully integrated with identity

and access management. As a consequence, the access to OCIR is granted to IAM users

and managed using the IAM polices you are already familiar with. In the background, the

container images are redundantly stored in the OCI object storage that backs the OCIR.

Repositories are used to group related images. A single repository can be thought of as

a set of related, tagged Docker image versions for a single service or application. In the

context of OCIR, carefully assigned tags are used not only to denote particular versions

or variants of containerized applications but also to indicate the tenancy namespace,

destination region, and repository name. To push an image to your tenancy OCIR, you

have to tag the image using a strictly defined notation, as presented in Figure 8-9.

Chapter 8 OraCle COntainer engine fOr Kubernetes

431

OCIR uses different region codes than the ones you’ve encountered up to now.

Table 8-1 presents a few of them. An updated list can be found here: https://docs.

cloud.oracle.com/iaas/Content/General/Concepts/regions.htm.

Figure 8-9. Image tags and OCIR

Table 8-1. OCIR region codes

Region Name Region Identifier OCIR Key

australia east (sydney) ap-sydney-1 syd

brazil east (sao paulo) sa-saopaulo-1 gru

Canada southeast (toronto) ca-toronto-1 yyz

germany Central (frankfurt) eu-frankfurt-1 fra

india West (Mumbai) ap-mumbai-1 bom

Japan east (tokyo) ap-tokyo-1 nrt

london (uK) uk-london-1 lhr

south Korea Central (seoul) ap-seoul-1 icn

switzerland north (Zurich) eu-zurich-1 zrh

uK south (london) uk-london-1 lhr

us east (ashburn) us-ashburn-1 iad

us West (phoenix) us-phoenix-1 phx

Chapter 8 OraCle COntainer engine fOr Kubernetes

https://docs.cloud.oracle.com/iaas/Content/General/Concepts/regions.htm
https://docs.cloud.oracle.com/iaas/Content/General/Concepts/regions.htm

432

You can find the tenancy namespace in the Registry view in the OCI Console. If logged

in as the tenancy superuser, you do not need any particular IAM policies to see OCIR in

the OCI Console. This is how you access the relevant view using the OCI Console:

 1. Go to Menu ➤ Developer Services ➤ Registry.

Figure 8-10. Viewing an Oracle container Image registry in the OCI Console

The tenancy namespace is visible as a root node of the repository list. You will find it

next to an icon of a house. In my case, the namespace name is the same as my tenancy

name (jakobczyk), but this might no longer be the case for newer tenancies. You will

probably find a random string.

To allow other IAM users to interact with OCIR, you have to create the appropriate

IAM policies that explicitly grant particular access to the chosen IAM groups. In the

course of this book, we have been dealing with two groups: sandbox-admins and

sandbox-users. Let’s assume we would like to grant the sandbox-admins group

members a permission to list all Docker repositories in the tenancy. Furthermore, both

groups should be able to push, pull, and delete images in repositories whose names

begin with the sandbox prefix such as sandbox/uuid or sandbox-cicd/uuid. On your

local host with the OCI CLI, open the chapter08/2-docker/policies directory.

$ cd ~/git

$ cd oci-book/chapter08/2-docker

$ cd policies

$ ls -1

tenancy.ocir.policies.json

Chapter 8 OraCle COntainer engine fOr Kubernetes

433

The JSON file contains three policy statements, as shown in Listing 8-3. The manage

repos gives full access to all Registry-related OCI APIs over the repositories whose names

match the where target.repo.name filter. The third rule gives the sandbox-admins

group members inspect repos access over all repositories. The inspect-level access

refers to just two APIs, ListDockerRepositories and ListDockerRepositoryManifests.

Listing 8-3. tenancy.ocir.policies.json

[

 " allow group sandbox-users to manage repos in tenancy where target.repo.

name = /sandbox*/",

 " allow group sandbox-admins to manage repos in tenancy where target.repo.

name = /sandbox*/",

 " allow group sandbox-admins to inspect repos in tenancy where request.

operation='ListDockerRepositories'"

]

Because the OCIR scope is the tenancy level, we have to create the policy in the root

compartment by pointing to it with the -c parameter of the iam policy create CLI

command. As you probably remember, we maintain three profiles in the CLI config. The

default profile calls the API on behalf of the tenancy admin and will be used when the

--profile parameter is unset. Back on our local machine, let’s execute the OCI CLI as the

tenancy admin.

$ TENANCY_OCID=`cat ~/.oci/config | grep tenancy | sed 's/tenancy=//'`

$ echo $TENANCY_OCID

tenancy=ocid1.tenancy.oc1..aa..........3yymfa

$ oci iam policy create -c $TENANCY_OCID --name tenancy-ocir-policy

--description "OCIR Polices" --statements "file://tenancy.ocir.policies.

json"

{

 "data": {

...

 "lifecycle-state": "ACTIVE",

 "name": "tenancy-ocir-policy",

Chapter 8 OraCle COntainer engine fOr Kubernetes

434

 "statements": [

 "allow group sandbox-users to manage repos in tenancy where target.

repo.name = /sandbox*/",

 "allow group sandbox-admins to manage repos in tenancy where target.

repo.name = /sandbox*/",

 "allow group sandbox-admins to inspect repos in tenancy where

request.operation='ListDockerRepositories'"

],

...

 },

 "etag": "d705d10ec093dbaf7c116054709951d38d3f7651"

}

You can verify the presence of the newly created IAM policy in the OCI Console.

Remember to switch the scope to the root compartment, as shown in Figure 8-11.

Figure 8-11. OCIR policy

Having said that OCIR is fully integrated with IAM, it is clear that only authenticated

and authorized IAM users are allowed to pull or push images in private repositories. You

already worked with authentication tokens in the previous chapter. As a quick recap,

let me mention a couple of facts. Users are authenticated based on the authentication

tokens. A token is a relatively short Oracle- generated string. Any IAM user can have up

to two authentication tokens at a time. Tokens can be created by the users themselves

or arbitrarily by administrators either using the OCI Console or by leveraging API-based

automation such as the OCI CLI.

This is how you generate an authentication token as a sandbox-user in the OCI Console:

 1. Log in to the OCI Console as the sandbox-user.

 2. Go to the user profile by clicking the user name, as shown in Figure 8-12.

 3. On the Resources tab, click Auth Tokens.

Chapter 8 OraCle COntainer engine fOr Kubernetes

435

 4. Click Generate Token.

 5. Provide a description for your token, and click Generate Token.

 6. Write down your token. You will see it only once.

Figure 8-12. Accessing the user profile in the OCI Console

Figure 8-13. Seeing a generated token

It is crucial to remember that you see a newly generated authentication token only

once, as shown in Figure 8-13. If you lose it, you will have to delete the old token and

generate a new one.

To programmatically generate an authentication token for a selected user, you

can execute the following CLI commands on behalf of the tenancy admin using the

default CLI profile (just omit the --profile parameter). First, you query for the OCID

Chapter 8 OraCle COntainer engine fOr Kubernetes

436

of a particular user, and then you use the iam auth-token create CLI command for

that user.

$ IAM_USER_OCID=`oci iam user list -c $TENANCY_OCID --query

"data[?name=='sandbox-user'] | [0].id" --raw-output --all`

$ echo IAM_USER_OCID

ocid1.user.oc1..aa..........dzqpxa

$ oci iam auth-token create --user-id $IAM_USER_OCID --description token-

ocir --query 'data.token' --raw-output

B8.E_Ry7oOtN1KF0do9x

No matter which way you choose, please make sure you have an authentication

token for the sandbox-user IAM user.

We are about to push the uuid:1.0 image we built a few moments ago. To push a

local container image in OCIR, you have to do the following:

 1. Choose the OCIR region.

 2. Properly tag the local image according to the OCIR naming

convention.

 3. Log in to the region-specific OCIR as a named IAM user.

 4. Push the tagged image.

You can find the graphical illustration of the OCIR naming convention for image

tagging in Figure 8-9. I am going to push the image to the OCIR in Frankfurt, but you can

of course select your region in which you’ve worked until now. In such case, you will find

the required OCIR region code in Table 8-1.

At the time of writing, the tenancy namespace can be programmatically read

from the OCI API using the oci os ns get CLI command. Let’s identify our tenancy

namespace. We will use it in a few moments.

$ oci os ns get --query data --raw-output

jakobczyk

As you can see, my tenancy namespace has the same value as my tenancy name.

This is because I am using a relatively old cloud account. For newer cloud accounts,

probably including yours, the tenancy namespace and tenancy name nearly always

differ.

Chapter 8 OraCle COntainer engine fOr Kubernetes

437

Caution While working with OCir, be careful not to confuse the tenancy name
with the tenancy namespace. Make sure you use the tenancy namespace to tag
the image and log in to OCir.

Connect to the developer instance now.

$ ssh -i ~/.ssh/oci_id_rsa opc@$DEV_VM_PUBLIC_IP

[opc@dev-vm] $

Here’s how I am tagging the local uuid:1.0 image as fra.ocir.io/jakobczyk/

sandbox/uuid:1.0 using the docker tag command:

[opc@dev-vm] $ OCI_PROJECT_CODE=sandbox

[opc@dev-vm] $ OCI_TENANCY_NAMESPACE=jakobczyk

[opc@dev-vm] $ OCIR_REGION=fra

[opc@dev-vm] $ OCI_USER=sandbox-user

[opc@dev-vm] $ IMAGE_NAME=uuid

[opc@dev-vm] $ IMAGE_TAG=1.0

[opc@dev-vm] $ docker tag $IMAGE_NAME:$IMAGE_TAG $OCIR_REGION.ocir.io/$OCI_

TENANCY_NAMESPACE /$OCI_PROJECT_CODE/$IMAGE_NAME:$IMAGE_TAG

[opc@dev-vm] $ docker images --format "table {{.Repository}}\t{{.Tag}}\t{{.ID}}"

REPOSITORY TAG IMAGE ID

uuid 1.0 b16f04d1bb7f

fra.ocir.io/jakobczyk/sandbox/uuid 1.0 b16f04d1bb7f

python 3-alpine fe3ef29c73f3

As you can see, both the uuid:1.0 and fra.ocir.io/jakobczyk/sandbox/uuid:1.0

tags refer to the same b16f04d1bb7f image. This was our goal. Now, log in to the OCIR

and push the image like this. You will be prompted for the Auth Token.

[opc@dev-vm] $ docker login -u $OCI_TENANCY_NAMESPACE/$OCI_USER $OCIR_

REGION.ocir.io

Password: B8.E_Ry7oOtN1KF0do9x

Login Succeeded

[opc@dev-vm]$ docker push $OCIR_REGION.ocir.io/$OCI_TENANCY_NAMESPACE/

$OCI_PROJECT_CODE/$IMAGE_NAME:$IMAGE_TAG

Chapter 8 OraCle COntainer engine fOr Kubernetes

438

The push refers to repository [fra.ocir.io/jakobczyk/sandbox/uuid]

4954d6a23347: Pushed

7337b89d95ab: Pushed

1821dd20f0ac: Pushed

640ae8435b21: Pushed

5191bfc553a0: Pushed

0db5724f9017: Pushed

7f61afcc4a4d: Pushed

8cec11e3dff0: Pushed

f1b5933fe4b5: Pushed

1.0: digest: sha256:33645f08e7eed90afde92b7331254a6d24a6480b12f01e13148be3b

ae81fc180 size: 2200

[opc@dev-vm]$ docker logout $OCIR_REGION.ocir.io

Removing login credentials for fra.ocir.io

[opc@dev-vm]$ exit

Tip if you receive a docker login error stating that a tenant with a given
namespace was not found, you probably used the tenancy name instead of the
tenancy namespace. please use the tenancy namespace to tag the image and log
in to OCir. You can use the oci os ns get command to find out your tenancy
namespace.

Now, you can verify that the image has been successfully pushed into OCIR as a new

private Docker repository. This time, I am logging into the OCI Console as sandbox-

admin. If you logged in as sandbox-user, you wouldn’t be able to list the Docker

repositories because the policy we had set lets only sandbox-admins group members do

this. Figure 8-14 presents the newly created repository that represents the newly pushed

uuid:1.0 image. The Access field indicates that we are dealing with a private repository,

which is visible for successfully authenticated and authorized IAM users. In the User

field, you can see the OCID of the user who created the repository. Figure 8-15 presents

the details of a concrete image version.

Chapter 8 OraCle COntainer engine fOr Kubernetes

439

The image is present in OCIR.

Figure 8-15. Viewing an OCIR repository image

Figure 8-14. Viewing an OCIR repository

Chapter 8 OraCle COntainer engine fOr Kubernetes

440

 Container Management
Think about provisioning an instance pool fronted by a load balancer. In an instance pool,

each compute instance uses Docker and pulls an image on startup to run multiple, let’s

say three, containers based on the uuid:1.0 image. In this way, a large number of UUID

API instances would be capable of serving a truly demanding stream of requests incoming

over the load balancer. This is conceptually presented in Figure 8-16.

This could work well, and you would have the opportunity to horizontally scale out

the number of compute instances as demand grows or scale them in as the demand

decreases, either manually or by employing the autoscaling mechanism.

Take a moment to consider a few challenges, though.

• Upgrading all running containers by introducing a newer image

version

• Adding other containers based on different images

• Changing the number of containers per compute instance

Figure 8-16. Many instances of a containerized application on many VMs

Chapter 8 OraCle COntainer engine fOr Kubernetes

441

At first glance, you just need to push the relevant images to OCIR and adapt the

cloud- config files, Terraform providers, or Ansible Playbook depending on the instance

initialization style you follow. Yet, if you look closer at the challenge, you will start asking

yourself the following questions:

• How do I securely manage the Auth Tokens on these instances?

• How would I avoid downtime?

• What should I do if I have to handle dependencies between different

containerized applications?

• How would I actually manage virtual networking between various

containerized applications on many compute instances if they have

to interact with each other?

• How would one container discover and talk to other containers?

As you can see, sometimes, or I dare say often, it is not enough just to launch an

instance pool with a container runtime on each instance that runs containerized

applications that are all fronted by a load balancer. The questions I listed prove that you

need a more sophisticated and more powerful mechanism to manage the containers

and support the full lifecycle of containerized applications. This is where the container

orchestration comes into play.

 Container Orchestration
Contemporary backend systems are composed of many interacting applications and

application modules that belong to more specialized systems. This approach was

intensified with the arrival of service-oriented architecture (SOA) years ago. SOA has

been broadly adapted ever since. Service orientation is a design paradigm in which

preferably stateless software components are considered as services that offer their

functionality through well-described APIs. This approach results in a more granular

split of capabilities between individual software components and entails an increased

demand for various types of interactions between individual services.

Running each service as a stand-alone process in the context of the operating

system would be a pretty cumbersome task. This is why services have been traditionally

deployed to application servers that fulfilled many crucial nonfunctional tasks such as

managing dependencies, offering resource injection, providing security, persisting state,

Chapter 8 OraCle COntainer engine fOr Kubernetes

442

delivering monitoring capabilities, and implementing APIs. Service developers benefited

from delegating these support tasks to application servers simply because they were

able to focus on functional goals in their service code. Application servers could be then

combined into clusters to enable load distribution and high availability. Furthermore,

the dependencies were installed and registered on the level of application servers

and therefore decoupled from the service code. At first glance, it sounds absolutely

wonderful, like an ultimate solution for enterprise software. Yet, it could lead and often

led to problems during the migration of particular services from one environment to

another. In the world of application servers, developers usually handed their deployment

artifacts together with the list of required dependencies to the operations team whose

role was to install the services in various environments and plug them into the messaging

bus if needed. Sometimes, it happened that the configuration of different environments

differed so much that unexpected problems occurred due to incorrect properties or

incompliant versions of libraries. To deploy a service to a given application server, the

service code had to adhere to standards supported and interfaces implemented by a

particular application server. For example, you deployed Java EE applications to JEE-

compliant servers, Python applications to WSGI-compliant web servers, and .NET

applications to Microsoft IIS.

One thing that distinguishes services deployed to an application server from

containerized applications is the fact that all dependencies, in the case of the latter,

are bundled with the application in the form of an image. Thanks to the filesystem

layers shared by many images, this doesn’t cause any major storage capacity

problems. No application server, however, means that the containers have to handle

all nonfunctional tasks themselves. To address this challenge, you might create a set

of dedicated containers, which handle these nonfunctional tasks, for each container

that implements a service or part of a business process. As a matter of fact, this is

a well-known pattern called the sidecar pattern. This creates a need to logically

combine the main container with its sidecar containers and govern their lifecycle

jointly as a single logical deployment unit. Containerization often results in even

more granular applications, each focused on a narrow and specialized task, whether

it is data transformation, the implementation of a single REST resource that belongs

to a standardized API, or the interaction with various software-as-a-service business

solutions. Some tend to call these highly specialized services as microservices. A

number of microservices have to interact in order to accomplish one or more business

processes. Therefore, containerized applications need some kind of service discovery

Chapter 8 OraCle COntainer engine fOr Kubernetes

443

mechanism and connectivity. To achieve fault tolerance and enable highly availably

application deployments, multiple hosts with container runtimes are grouped together

to form clusters. These clusters must provide some kind of overlay network to let all

containerized applications smoothly interact with each other when needed. All in all,

we come back, to some extent, to the problems that had been already solved for services

deployed to application servers. What we need for containerized applications is some

kind of an infrastructure-agnostic platform that will support clustering, built-in scaling,

lifecycle management, and flat overlay network for related groups of containers, as

illustrated in Figure 8-17.

Figure 8-17. Platform for containerized applications

The goals for that kind of container platform are as follows:

• Orchestrating containerized applications

• Abstracting underlying infrastructure

Chapter 8 OraCle COntainer engine fOr Kubernetes

444

• Providing applications with the following:

• A flat overlay network

• Scalable computing capacity

• Persistent storage

• An integrated service discovery for applications

• Health checks functionality

• And more

According to the Oxford dictionary, the word orchestration can mean “coordination

of the elements (…) to produce a desired effect.” The platform coordinates the lifecycle

of individual and related containers including but not limited to creation, scaling,

termination, intelligent upgrades, and self-healing.

From the application’s point of view, it does not matter how many compute

instances or what kind of load balancers are involved. It is the computing power and

a steady and uninterrupted stream of incoming requests that matters. This makes the

infrastructure an ideal candidate to be abstracted.

There is already a considerable number of available cluster-aware platforms for

running containerized applications including the following:

• Docker Swarm

• HashiCorp Nomad

• Mesosphere DC/OS

• Kubernetes

Cloud Native Computing Foundation (CNCF) hosts an ecosystem of open source

software focused on containerized applications. Its members are major cloud providers,

well-established enterprise software vendors, and rapidly growing startups. At the time

of writing, Kubernetes is the only graduated project in the area of container orchestration,

has more than 2,100 direct contributors on GitHub, and has been adopted by a number of

cloud providers as the engine for their managed container platforms.

Chapter 8 OraCle COntainer engine fOr Kubernetes

445

 Kubernetes
Kubernetes is a truly immense topic that could fill a separate book. The platform

and a diverse ecosystem of related tools provide a broad range of container-oriented

functionalities, mentioned in the previous section. Kubernetes comes with an

extendable and pluggable control plane. Kubernetes, being a rich-feature container

platform built around container orchestration, provides containerized applications with

an infrastructure-agnostic, scalable deployment canvas equipped with a pluggable,

flat- space networking.

Containerized applications are organized into pods. A pod is a logical construct that

groups closely related containers, usually one main and a few sidecar containers. Even

though still somehow isolated, containers in the same pod do share some elements such

as the hostname, network interfaces, and the IPC namespace. What remains separate

are the filesystem layers each individual container is built from, unless they share the

same or similar images. Containers can communicate with other containers in the

same pod using localhost because they share the loopback interface. How do you group

containers into pods? First, think about scaling. Pods can be replicated to increase the

processing throughput or simply provide high availability to respond to a failure. If you

feel that it is more appropriate to scale two particular containers separately, put them

into two separate pods. Second, think about the sidecar pattern. Having a particular

main container, you would often put the dedicated support containers into the same pod

to let them communicate freely with the main container, for example, over the loopback

interface.

A pod is an example of a core Kubernetes object type. There are a few other types

of Kubernetes objects. I mentioned before that pods can be replicated. The replication

is handled by a ReplicaSet object. One of the fundamental Kubernetes concepts is

the presence of controller control loops. A ReplicaSet defines the expected count of

pods that have a particular label attached. The corresponding control loop ensures

the number of pods is correct according to the expected state. If there are too few pod

replicas running in a given moment in time, the control loop will make sure that the

instance count is increased to what is expected in a particular ReplicaSet definition.

With a set of pod replicas that provides an implementation of a particular API, you

may be asking how to expose this API. Another type of Kubernetes object, a Service

object, is used to provide a static point of entry to the group of pod replicas that

implement a particular service. Kubernetes knows where to dispatch the incoming

requests based on selectors. As you define a Service object, you provide a label selector.

Chapter 8 OraCle COntainer engine fOr Kubernetes

446

All pods with the given label will be considered addressees of the service. The default

type of a Service object is called a ClusterIP. It provides a service with an internal IP

address reachable from within the cluster only. This is perfectly fine for containers

with services called by other containers within the cluster. To let a service be reachable

from the outside of a cluster, you can choose a LoadBalancer type, provided that your

underlying cloud infrastructure supports this type. Oracle Cloud Infrastructure does

offer public load balancers that are attached to a public IP and reachable from the

Internet. I will show this in action in a few moments.

If you think about upgrade strategies, you could probably name a few. First, if you

accept a short period of downtime, the easiest approach is to simply kill all pods whose

containers use a deprecated image and let the ReplicaSet re-create them automatically

in the background, this time using the newest image. Alternatively, you could apply the

blue-green deployment strategy in which you create the new pods, which are based on

the new image version, in parallel to the actively running pods, which are based on the

previous image version, and switch the service to point to these new pods in a single

moment. Finally, you could perform a rolling upgrade by replacing pods, one by one,

with newer image versions. The rolling upgrade strategy would require you to employ

two ReplicaSet resources and perform changes step-by- step in a procedural manner.

ReplicaSet is rather a low-level object. To enhance the upgrading experience, a higher-

level object called Deployment has been made available. A Deployment object controls

pods through a ReplicaSet in a way that makes it much easier to handle the upgrade

process based on purely declarative changes. We are not going to explore upgrade

strategies in this book, but we are going to use the Deployment object, and this is the

reason why I am briefly describing it.

To wrap up this fast-paced introduction to the main types of Kubernetes objects, let’s

take a look at Figure 8-18. There are two deployments defined. The one shown on the

left side defines a single-container pod, tagged with Tag A, and sets the expected count

to two replicas. The second one, shown in the right side, defines a two-container pod,

tagged with Tag B, and sets the expected count to three replicas. Furthermore, there are

two LoadBalancer-type services created. One is forwarding traffic to the pods with the

tag Tag A attached, while the second one is forwarding traffic to the pods with Tag B.

Chapter 8 OraCle COntainer engine fOr Kubernetes

447

There are a couple of other types of Kubernetes objects such as StatefulSets,

DaemonSets, Jobs, Ingresses, PersistentVolumes, StorageClasses, and others. If I tried

to cover all of them here, the book would grow to an enormous size. This is why we are

focusing only on the objects that are used to demonstrate Oracle Kubernetes Engine in

the incoming sections of this chapter. Do not worry if this all seems too theoretical.

You will see these objects in action in a few moments from now. Just read on.

Building a production-ready cluster with various additional features can be a

challenge on its own. Even if you are not tasked with designing and launching a

Kubernetes cluster, it is still good to understand its high-level architecture.

The Kubernetes control plane is built from various software components replicated

and distributed across an uneven number of master nodes. These components are

the API server, scheduler, and controller manager. The Kubernetes object definitions

are stored in a distributed, persistent key-value store called etcd. The etcd cluster

has a lifecycle separate from Kubernetes that increases the planning effort when

launching production-ready clusters. Only the API server accesses etcd directly. Pods

are scheduled to the other types of nodes called worker nodes. On each node, there is a

kubelet daemon usually running as a systemd host service manager. You could think of

the kubelet as the node agent. It takes care of pod-specific containers on a given node by

talking to the local container runtime. From a networking point of view, the Kubernetes

Service proxy is responsible for controlling the traffic routing between services and pods,

while another pluggable component called the Container Network Interface plugin

Figure 8-18. Kubernetes objects

Chapter 8 OraCle COntainer engine fOr Kubernetes

448

implements the overlay networking between pods. Figure 8-19 provides a high-level

overview of selected components that belong to the Kubernetes control plane.

This book is not devoted to Kubernetes administration, and you need to be aware

that there are plenty of various caveats to be considered when planning a custom

installation of a Kubernetes cluster. Luckily, we won’t need to bother about these aspects

because of the presence of a managed Kubernetes engine.

Figure 8-19. Kubernetes, underlying infrastructure

Chapter 8 OraCle COntainer engine fOr Kubernetes

449

 Managed Cluster
Oracle Cloud Infrastructure comes with Oracle Kubernetes Engine (OKE), a managed

Kubernetes platform-as-a-service cloud offering validated against the CNCF Certified

Kubernetes Conformance Program. The certification ensures that the required

Kubernetes APIs are fully supported and in line with the open source distribution. A

managed service means that within a few minutes you get a fully operational cluster

managed in an intelligent way by the platform. You do not need to bother about the

etcd cluster or master node configuration. All control plane components are installed

automatically. Your role is to choose the worker node shapes and point to the VCN

subnets in which the worker nodes and load balancers are to be created. The cluster will

be fully integrated with IAM and run on Oracle Cloud Infrastructure compute instances.

Creating a cluster in the OCI Console is pretty straightforward. First things first,

however. If you have never launched any OKE cluster in your tenancy, you have to

explicitly enable the OKE service. You do this by adding a simple IAM policy within the

root compartment. The required statement is presented in Listing 8-4 and allows the

OKE service to manage all the resources in the entire tenancy. The OKE service must be

able to provision instances and dynamically change some networking resources such as

security lists.

Listing 8-4. tenancy.oke.policy.json

["allow service OKE to manage all-resources in tenancy"]

Make sure you are on your local machine. Let’s create the required policy. We are not

using the --profile parameter; therefore, the command will be executed as the tenancy

admin because this user is defined in the DEFAULT profile of our CLI configuration file.

$ TENANCY_OCID=`cat ~/.oci/config | grep tenancy | sed 's/tenancy=//'`

$ echo TENANCY_OCID

ocid1.tenancy.oc1..aa.........3yymfa

$ cd ~/git

$ cd oci-book/chapter08/3-kubernetes

$ cd policies

$ oci iam policy create -c $TENANCY_OCID --name tenancy-oke --description

"OKE Policy" --statements "file://tenancy.oke.policy.json"

Chapter 8 OraCle COntainer engine fOr Kubernetes

450

{

 "data": {

 ...

 "lifecycle-state": "ACTIVE",

 "name": "tenancy-oke",

 "statements": [

 "allow service OKE to manage all-resources in tenancy"

],

 ...

 },

}

Nowadays, with more and more end-to-end automation in place, we are used to a

“one-click” approach that assumes no complex actions are needed to complete a task

such as cluster provisioning. As I said earlier, launching a cluster in the OCI Console

(or using CLI) is pretty straightforward. To provision a cluster using the OCI Console,

you need to go to Developer Services, choose Container Clusters, click Create Cluster,

and provide a few details such as the Kubernetes version, worker node shape, and

initial quantity per worker node subnet. This book, however, is oriented on code-driven

automation; therefore, I will show how to use the Terraform-powered infrastructure code

to provision a cluster on top of a custom virtual networking layout.

We want sandbox-admin to be recognized by the OKE cluster as its initial

administrator. This is why it is absolutely crucial that you provision the cluster as the

sandbox-admin user. Until now, Terraform created all resources on behalf of the tenancy

admin. To make Terraform use another set of credentials and interact with the OCI API

this time as sandbox-admin, you have to prepare a new variable definition file, as shown

in Listing 8-5.

Listing 8-5. sandbox-admin.tfvars

tenancy_ocid = "<put-here-tenancy-ocid>"

region = "<put-here-region-identifier>"

user_ocid = "<put-here-sandbox-admin-ocid>"

private_key_path = "<put-here-path-to-sandbox-admin-auth-key>"

private_key_password = "<put-here-sandbox-admin-auth-key-pass>"

fingerprint = "<put-here-sandbox-admin-auth-key-fingerprint>"

compartment_ocid = "<put-here-sandbox-compartment-ocid>"

Chapter 8 OraCle COntainer engine fOr Kubernetes

451

We will use the --var-file parameter to pass the new file to terraform and in

this way set the values for the oci provider to execute all the API calls on behalf of the

sandbox-admin user. All required details are already present in the SANDBOX-ADMIN profile

in the .oci/config file. I have prepared a helper script to generate the sandbox-admin.

tfvars file out of the values stored in the .oci/config file.

$ SANDBOX_COMPARTMENT_OCID=`oci iam compartment get --query data.id --raw-

output --profile SANDBOX-ADMIN`

$ cd ~/git/oci-book/chapter08/3-kubernetes

$ chmod a+x oci_config_to_tfvars.sh

$./oci_config_to_tfvars.sh ~/.oci/config ~/sandbox-admin.tfvars $SANDBOX_

COMPARTMENT_OCID

Make sure the newly created tfvars file is indeed present at the ~/sandbox- admin.

tfvars path and continue.

We are going to use Terraform to provision VCN-related resources such as subnets,

security lists, and gateways with the Kubernetes cluster cloud resource and an instance

pool of worker nodes. OKE requires various resources such as compute instances, load

balancers, and virtual networking. The sandbox-admins group members and tenancy

administrators already have all permissions in place to manage the required cloud

resource types in the Sandbox compartment. In the chapter08/3-kubernetes directory,

you will find the infrastructure code. Let’s provision it.

$ cd ~/git

$ cd oci-book/chapter08/3-kubernetes

$ cd infrastructure

$ find . | sort

./kube

./kube/cluster.tf

./kube/vars.tf

./kube/vcn-lb.tf

./kube/vcn-workers.tf

./modules.tf

./provider.tf

./vars.tf

./vcn.tf

$ terraform init

Chapter 8 OraCle COntainer engine fOr Kubernetes

452

Initializing modules...

- kubernetes in kube

Initializing the backend...

Initializing provider plugins...

- Checking for available provider plugins...

- Downloading plugin for provider "oci" (terraform-providers/oci) 3.30.0...

Terraform has been successfully initialized!

$ terraform apply -var-file="~/sandbox-admin.tfvars" -auto-approve

...

Tip if you have received an 401 error, you are most probably using a relative path
to your private key. please open the sandbox-admin.tfvars file and replace
the ~ character or the $HOME variable with an absolute path to your home
directory such as /home/thomas/or /Users/thomas/.

Provisioning the infrastructure and subsequent cluster control plane components’

installation on the master and worker nodes will take a couple of minutes, usually less

than eight minutes. Terraform will be displaying the Still creating message. You can

also access the OCI Console and observe the new cluster in the Creating state, as shown in

Figure 8-20. To do so, do the following:

 1. Go to Menu ➤ Developer Services ➤ Clusters.

Figure 8-20. OKE cluster provisioning

Chapter 8 OraCle COntainer engine fOr Kubernetes

453

At some point in time, the cluster will transfer to the Active state. This announces

the readiness of the control plane. You still need to wait a few moments for the worker

nodes until the node pool instance enters the running state. In the meantime, please

take a look at the cluster and networking information, as shown in Figure 8-21. The

infrastructure code provisions a Kubernetes cluster with a single-worker node pool. We

can clearly see who has created the cluster.

Caution in the Created by field, you should see the name or the OCiD of the
sandbox-admin user, as shown in figure 8-21. if you see another user such as
the tenancy admin, it means you have either skipped the --var-file parameter
when executing terraform apply or somehow have invalid user data in the
~/sandbox-admin.tfvars file. please use terraform destroy to delete
the current cluster, make sure the new terraform properties file for the sandbox-
admin user is correct, and re-create the infrastructure.

All cloud resources have been provisioned in the Sandbox compartment. There are

two load balancer subnets. They will be used to host highly available, floating-IP-based,

public load balancers that will appear when you start creating LoadBalancer-type

Service Kubernetes objects. The Pods CIDR field shows the private IP address range

that will be used by dynamically created pods, while the Services CIDR field shows the

same for the addresses exposed by Kubernetes services. Both pods and service address

ranges are chosen in such a way that they do not overlap with the address range used by

the kube-vcn VCN to which the worker nodes are attached.

Chapter 8 OraCle COntainer engine fOr Kubernetes

454

If you look at the final output in Terraform, you will see not only cluster resources but

also a node pool mentioned.

...

module.kubernetes.oci_containerengine_cluster.k8s_cluster: Creation

complete after 6m6s module.kubernetes.oci_containerengine_node_pool.k8s_

nodepool: Creating...

module.kubernetes.oci_containerengine_node_pool.k8s_nodepool: Creation

complete after 2s

Apply complete! Resources: 13 added, 0 changed, 0 destroyed.

The node pool is managed by OKE, and you can see it in the OCI Console at the

bottom of the Cluster details view, as shown in Figure 8-22. The pool controls the

compute instances that serve as worker nodes. If you click one of the names of any of

these instances, you will be transferred to the Instance Details view of the corresponding

instance. All worker nodes that belong to an OKE cluster node pool are visible just like

any ordinary compute instance, as presented in Figure 8-23. You can watch their metrics

and inspect other instance-specific information. You can also spot that instance display

names contain a small part of the cluster OCID. If you wondered where the instances for

the master nodes and etcd hosts are, the answer is that the entire OKE cluster control

Figure 8-21. Viewing an active OKE cluster summary in the OCI Console

Chapter 8 OraCle COntainer engine fOr Kubernetes

455

plane is fully managed by OKE and never exposed in any part in the API. You won’t see

them in the OCI Console, and you won’t be able to list them using API. These compute

resources are invisible.

The infrastructure code declares one compute instance in each worker node subnet

that we chose to be private subnets. You have two options for the worker nodes. They

can be attached to public subnets and hold public IPs or be isolated from the outside

world in private subnets that inhibit the instances from having public IPs. In our case,

we chose the second option. This is why you see Unavailable in the Public IP column of

Figure 8-23. OKE cluster instances in the OCI Console

Figure 8-22. OKE cluster node pool in the OCI Console

Chapter 8 OraCle COntainer engine fOr Kubernetes

456

the Node Pool table. The instances were deployed in two different ADs. They are of the

VM.Standard2.1 shape and based on the Oracle Linux 7.6 image. Where do these choices

actually come from? Let’s take a look at selected elements in the infrastructure code:

$ find . -name "*.tf" | sort

./kube/cluster.tf

./kube/vars.tf

./kube/vcn-lb.tf

./kube/vcn-workers.tf

./modules.tf

./provider.tf

./vars.tf

./vcn.tf

The infrastructure code follows a well-known structure you’ve already seen a few

times in this book. There is just one nonroot module named kube. It contains all the

infrastructure cloud resources used by the OKE cluster excluding VCN and gateways.

The VCN, the NAT gateway, and the Internet gateway are declared in the vcn.tf file.

The modules.tf file provides the OCIDs of the aforementioned networking resources as

input parameters to the kube module. The code from the root module is similar to what

you’ve seen in the previous exercises; therefore, I am not going to list the root module

files here. You can check them directly in the infrastructure code. Listing 8-6 shows the

vars.tf file from the kube module.

Listing 8-6. vars.tf (kube Module)

kube module - vars.tf

...

variable "oke_cluster" {

 type = map

 default = {

 cidr = "10.0.2.0/24"

 version = "v1.12.7"

 worker_image = "Oracle-Linux-7.6"

 worker_shape = "VM.Standard2.1"

 worker_nodes_in_subnet = 1

Chapter 8 OraCle COntainer engine fOr Kubernetes

457

 pods_cidr = "10.244.0.0/16"

 services_cidr = "10.96.0.0/16"

 }

}

variable "oke_wn_subnet_cidr" {

 type = list(string)

 default = ["10.0.2.0/27", "10.0.2.32/27"]

}

variable "oke_lb_subnet_cidr" {

 type = list(string)

 default = ["10.0.2.128/28", "10.0.2.144/28"]

}

variable "oke_engine_cidr" {

 type = list(string)

 default = ["130.35.0.0/16", "138.1.0.0/17"]

}

You may be overwhelmed by the number of various IP address ranges defined for

different subnets in the vars.tf file of the kube module. It is not as complicated as it may

seem. Take a look at Figure 8-24. Kubernetes alone requires two nonoverlapping private

IP address ranges for pods and services. These are set in the oke_cluster Terraform

variable map and later passed to the oci_container_engine_cluster Terraform

resource that represents the OKE cluster we have just provisioned. The underlying

infrastructure such as compute instances or OCI load balancers will be distributed

across four subnets that belong to the same VCN. The subnets for worker nodes are set in

the oke_wn_subnet_cidr list variable, while the subnets for load balancers are set in the

oke_lb_subnet_cidr list variable.

Chapter 8 OraCle COntainer engine fOr Kubernetes

458

Listing 8-7 presents the vcn-workers.tf file that contains declarations for VCN

resources related to the subnets for worker nodes. There are two private subnets defined,

each in a different availability domain.

Listing 8-7. vcn-workers.tf (kube Module)

resource "oci_core_route_table" "oke_workers_rt" {

 compartment_id = var.compartment_ocid

 vcn_id = var.vcn_ocid

 display_name = "oke-workers-rt"

 route_rules {

 destination = "0.0.0.0/0"

 network_entity_id = var.vcn_nat_ocid

 }

}

resource "oci_core_security_list" "oke_workers_sl" {

 compartment_id = var.compartment_ocid

 vcn_id = var.vcn_ocid

 display_name = "oke-workers-sl"

Figure 8-24. OKE cluster-related subnets

Chapter 8 OraCle COntainer engine fOr Kubernetes

459

 # Allow all traffic within the VCN

 egress_security_rules {

 stateless = true

 destination = var.oke_cluster["cidr"]

 protocol = "all"

 }

 ingress_security_rules {

 stateless=true

 source = var.oke_cluster["cidr"]

 protocol="all"

 }

 # Allow all outbound traffic

 egress_security_rules {

 destination = "0.0.0.0/0"

 protocol = "all"

 }

}

resource "oci_core_subnet" "oke_workers_ad1_net" {

 compartment_id = var.compartment_ocid

 vcn_id = var.vcn_ocid

 display_name = "oke-workers-ad1-net"

 availability_domain = var.ads[0]

 cidr_block = var.oke_wn_subnet_cidr[0]

 route_table_id = oci_core_route_table.oke_workers_rt.id

 security_list_ids = [oci_core_security_list.oke_workers_sl.id]

 prohibit_public_ip_on_vnic = true

 dns_label = "work1"

}

resource "oci_core_subnet" "oke_workers_ad2_net" {

 compartment_id = var.compartment_ocid

 vcn_id = var.vcn_ocid

 display_name = "oke-workers-ad2-net"

 availability_domain = var.ads[1]

 cidr_block = var.oke_wn_subnet_cidr[1]

Chapter 8 OraCle COntainer engine fOr Kubernetes

460

 route_table_id = oci_core_route_table.oke_workers_rt.id

 security_list_ids = [oci_core_security_list.oke_workers_sl.id]

 prohibit_public_ip_on_vnic = true

 dns_label = "work2"

}

Similarly, the VCN resources dedicated to the subnets for load balancers are

declared in an analogous file called vcn-lb.tf and presented in Listing 8-8. Again, there

are two subnets defined, each in a different availability domain. The two subnets are

public so that OKE is able to create OCI public load balancers for any LoadBalancer- type

Kubernetes services.

Listing 8-8. vcn-lb.tf (kube Module)

resource "oci_core_route_table" "oke_lb_rt" {

 compartment_id = var.compartment_ocid

 vcn_id = var.vcn_ocid

 display_name = "oke-lb-rt"

 route_rules {

 destination = "0.0.0.0/0"

 network_entity_id = var.vcn_igw_ocid

 }

}

resource "oci_core_security_list" "oke_lb_sl" {

 compartment_id = var.compartment_ocid

 vcn_id = var.vcn_ocid

 display_name = "oke-lb-sl"

 # Allow all traffic within the VCN

 egress_security_rules {

 stateless = true

 destination = var.oke_cluster["cidr"]

 protocol = "all"

 }

Chapter 8 OraCle COntainer engine fOr Kubernetes

461

 ingress_security_rules {

 stateless=true

 source = var.oke_cluster["cidr"]

 protocol="all"

 }

 # Allow all inbound traffic on ports 30000-32767

 egress_security_rules {

 stateless = true

 destination = "0.0.0.0/0"

 protocol = "all"

 }

 ingress_security_rules {

 stateless=true

 source = "0.0.0.0/0"

 protocol="6"

 tcp_options {

 min = 30000

 max = 32767

 }

 }

}

resource "oci_core_subnet" "oke_lb_ad1_net" {

 compartment_id = var.compartment_ocid

 vcn_id = var.vcn_ocid

 display_name = "oke-lb-ad1-net"

 availability_domain = var.ads[0]

 cidr_block = var.oke_lb_subnet_cidr[0]

 route_table_id = oci_core_route_table.oke_lb_rt.id

 security_list_ids = [oci_core_security_list.oke_lb_sl.id]

 dns_label = "lb1"

}

Chapter 8 OraCle COntainer engine fOr Kubernetes

462

resource "oci_core_subnet" "oke_lb_ad2_net" {

 compartment_id = var.compartment_ocid

 vcn_id = var.vcn_ocid

 display_name = "oke-lb-ad2-net"

 availability_domain = var.ads[1]

 cidr_block = var.oke_lb_subnet_cidr[1]

 route_table_id = oci_core_route_table.oke_lb_rt.id

 security_list_ids = [oci_core_security_list.oke_lb_sl.id]

 dns_label = "lb2"

}

Finally, the OKE cluster and its corresponding node pool for compute instances that

serve as Kubernetes worker nodes are declared in the cluster.tf infrastructure file. The

code is shown in Listing 8-9.

Listing 8-9. cluster.tf (kube Module)

resource "oci_containerengine_cluster" "k8s_cluster" {

 compartment_id = var.compartment_ocid

 kubernetes_version = var.oke_cluster["version"]

 name = "k8s-cluster"

 vcn_id = var.vcn_ocid

 options {

 kubernetes_network_config {

 pods_cidr = var.oke_cluster["pods_cidr"]

 services_cidr = var.oke_cluster["services_cidr"]

 }

 service_lb_subnet_ids = [

 oci_core_subnet.oke_lb_ad1_net.id,

 oci_core_subnet.oke_lb_ad2_net.id

]

 }

}

resource "oci_containerengine_node_pool" "k8s_nodepool" {

 compartment_id = var.compartment_ocid

 cluster_id = oci_containerengine_cluster.k8s_cluster.id

 kubernetes_version = var.oke_cluster["version"]

Chapter 8 OraCle COntainer engine fOr Kubernetes

463

 name = "k8s-nodepool"

 node_image_name = var.oke_cluster["worker_image"]

 node_shape = var.oke_cluster["worker_shape"]

 subnet_ids = [

 oci_core_subnet.oke_workers_ad1_net.id,

 oci_core_subnet.oke_workers_ad2_net.id

]

 quantity_per_subnet = var.oke_cluster["worker_nodes_in_subnet"]

 ssh_public_key = file("~/.ssh/oci_id_rsa.pub")

}

Figure 8-25 illustrates the provisioned OCI infrastructure components that serve

for the k8s-cluster OKE cluster instance. Kubernetes control plane elements such as

master nodes and etcd hosts are fully managed, inaccessible, and therefore invisible

from the API or OCI Console. What you can inspect, monitor, and to some extent govern

are compute instances that serve as worker nodes, load balancers, and other virtual

networking components.

With a managed Kubernetes cluster in place, it is time to connect to the Kubernetes API.

Figure 8-25. Provisioned OKE cluster

Chapter 8 OraCle COntainer engine fOr Kubernetes

464

 Connecting As Superuser
Kubernetes assumes that users are fully managed externally to Kubernetes. If you are

working with an unmanaged Kubernetes cluster that is installed, for example, in your

data center or on some IaaS, you would usually set up certificate-based authentication

for clients or employ OpenID Connect that leverages ID tokens signed by an identity

trusted by the Kubernetes API. The latter would allow more production-oriented user

management strategies in the context of Kubernetes API authentication and, later,

authorization.

It is all much easier with a managed service such as Oracle Kubernetes Engine.

For OKE clusters, all IAM users are recognized and successfully authenticated, out of

the box, provided that they are members of groups with the proper IAM policies. What

comes next, though, is the authorization. IAM users who are members of a group that

has been assigned manage clusters in a given compartment where the cluster exists

are automatically considered cluster administrators by the Kubernetes OCI Authorizer

and have the full access to the entire Kubernetes API for that particular cluster. The rest

of the IAM users must be explicitly bound to either predefined or custom RBAC roles.

You will learn about this later. The sandbox-admin user belongs to the sandbox-admins

group, which has been granted full manage-level access over all the resources in the

Sandbox compartment. In this way, the Kubernetes API should recognize this user as

a cluster admin. First, you will need a so-called kubeconfig file, which is nothing more

than a YAML file with all the information needed to connect to the Kubernetes API as a

named user. To generate a kubeconfig file tailored to a particular IAM user, you can use

the OCI Console or OCI CLI like this (please note that we use --profile SANDBOX-ADMIN

to execute the CLI commands as the sandbox-admin user):

$ CLUSTER_OCID=`oci ce cluster list --name k8s-cluster --query

"data[?name=='k8s-cluster'] | [0].id" --lifecycle-state ACTIVE --raw-output

--profile SANDBOX-ADMIN`

$ echo $CLUSTER_OCID

ocid1.cluster.oc1.eu-frankfurt-1.aa.........tdg42w

$ REGION=eu-frankfurt-1

$ mkdir ~/.kube

$ oci ce cluster create-kubeconfig --cluster-id $CLUSTER_OCID --file

~/.kube/sandbox-admin.config --region $REGION --profile SANDBOX- ADMIN

New config written to the file /Users/mjk/.kube/sandbox-admin.config

Chapter 8 OraCle COntainer engine fOr Kubernetes

465

$ chmod 600 ~/.kube/sandbox-admin.config

$ ls -l ~/.kube | awk '{print $1, $9}'

-rw------- sandbox-admin.config

Based on the convention, the kubeconfig file is placed in the newly created directory

~/.kube. The ~/.kube/config path is considered by the kubectl tool we are about to use

as the default path for the kubeconfig file. We have deliberately used a custom name to

be able to use this configuration only intentionally. Listing 8-10 presents the kubeconfig

file generated for the sandbox-admin user.

Listing 8-10. .kube/sandbox-admin.config

apiVersion: v1

clusters:

- cluster:

 certificate-authority-data:

 ::: Base64-encoded cluster certificate :::

 server: https://c4wmntdg42w.eu-frankfurt-1.clusters.oci.oraclecloud.

com:6443

 name: cluster-c4wmntdg42w

contexts:

- context:

 cluster: cluster-c4wmntdg42w

 user: user-c4wmntdg42w

 name: context-c4wmntdg42w

current-context: context-c4wmntdg42w

kind: ""

users:

- name: user-c4wmntdg42w

 user:

 exec:

 apiVersion: client.authentication.k8s.io/v1beta1

 args:

 - ce

 - cluster

 - generate-token

 - --cluster-id

Chapter 8 OraCle COntainer engine fOr Kubernetes

466

 - ::: Cluster OCID :::

 - --region

 - eu-frankfurt-1

 command: oci

 env: []

The clusters:cluster:certificate-authority-data field is a Base64-encoded

certificate of the cluster, while the users:user:exec field is an instruction to use

a custom command to dynamically fetch the credentials and to authenticate as a

particular IAM user. If you want to authenticate, it is not enough just to hold this file.

The command used to fetch the credentials relies on the OCI CLI and a user-specific CLI

configuration file. You will see it in action in a few moments.

Do not forget that we are using a particular CLI profile for sandbox-admin. We have to

take it into consideration and amend the kube/sandbox-admin.config file accordingly.

Edit the .kube/sandbox-admin.config file and add two new lines (in bold), as shown here:

...

users:

- name: user-c2gmyzqguzt

 user:

 exec:

 apiVersion: client.authentication.k8s.io/v1beta1

 args:

 - ce

 - cluster

 - generate-token

 - --profile

 - SANDBOX-ADMIN

 - --cluster-id

...

You will use a tool called kubectl to connect to the Kubernetes API. The tool will

read the kubeconfig file to do the following:

 1. Find out what the Kubernetes API public endpoint is

 2. Securely connect to the Kubernetes API

 3. Use the OCI CLI to fetch the token and authenticate us as a named

IAM user

Chapter 8 OraCle COntainer engine fOr Kubernetes

467

The kubectl tool has been already preinstalled on the developer instance by the

cloud-init based on the supplied cloud-config file, so you should be able to use the

tool out of the box. We still need to install the OCI CLI on the developer instance. Now,

connect to the developer instance and execute the following command:

[opc@dev-vm ~]$ bash -c "$(curl -L https://raw.githubusercontent.com/

oracle/oci-cli/master/scripts/install/install.sh)"

...

-- Installation successful.

-- Run the CLI with /home/opc/bin/oci --help

[opc@dev-vm ~]$ oci --version

2.6.14

[opc@dev-vm ~]$ mkdir ~/.oci

[opc@dev-vm ~]$ mkdir ~/.apikeys

[opc@dev-vm ~]$ exit

Now, we need to prepare and upload the CLI configuration for sandbox-admin.

$ cat ~/.oci/config | grep -A 4 "\[SANDBOX-ADMIN\]" > ~/.oci/devvm.config

$ cat ~/.oci/config | grep tenancy >> ~/.oci/devvm.config

$ cat ~/.oci/config | grep region >> ~/.oci/devvm.config

$ scp -i ~/.ssh/oci_id_rsa ~/.oci/devvm.config opc@$DEV_VM_PUBLIC_IP:/home/

opc/.oci/config

devvm.config 100% 329 5.5KB/s

The CLI configuration references the API signing key. Let’s upload it as well.

$ scp -i ~/.ssh/oci_id_rsa ~/.apikeys/api.sandbox-admin.pem opc@$DEV_VM_

PUBLIC_IP:/home/opc/.apikeys/api.sandbox-admin.pem

api.sandbox-admin.pem 100% 1766 10.0KB/s

The only thing missing is the kubeconfig file on the developer instance. We are

therefore going to securely copy the kubeconfig file to the developer instance like this:

$ scp -i ~/.ssh/oci_id_rsa ~/.kube/sandbox-admin.config opc@$DEV_VM_PUBLIC_

IP:/home/opc/.kube/config

sandbox-admin.config 100% 3669 117.0KB/s 00:00

Chapter 8 OraCle COntainer engine fOr Kubernetes

468

Tip to find out how the developer instance has been initialized, you can read the
cloud-config file available at chapter08/1-devmachine/devmachine/cloud-
init/devvm.config.yaml.

Now, please connect to the developer instance.

$ ssh -i ~/.ssh/oci_id_rsa opc@$DEV_VM_PUBLIC_IP

Shortly before we start interacting with the Kubernetes API, we will adjust the file

permissions for the newly uploaded configuration files.

[opc@dev-vm ~]$ chmod 600 .kube/config

[opc@dev-vm ~]$ chmod 600 .oci/config

We are going to issue a few kubectl commands to test the connectivity with the

Kubernetes API and inspect the basic Kubernetes objects in our cluster. While still on the

developer instance, issue the following commands:

[opc@dev-vm ~]$ kubectl get nodes

NAME STATUS ROLES AGE VERSION

10.0.2.2 Ready node 14h v1.12.7

10.0.2.34 Ready node 14h v1.12.7

[opc@dev-vm ~]$ kubectl get namespaces

NAME STATUS AGE

default Active 14h

kube-public Active 14h

kube-system Active 14h

[opc@dev-vm ~]$ kubectl get pods -n kube-system

NAME READY STATUS

kube-dns-7db5546bc6-4gvqq 3/3 Running

kube-dns-7db5546bc6-gq6fq 3/3 Running

kube-dns-autoscaler-7fcbdf46bd-5sdnx 1/1 Running

kube-flannel-ds-gvkxn 1/1 Running

kube-flannel-ds-vlsgk 1/1 Running

kube-proxy-blzxf 1/1 Running

kube-proxy-sdv4m 1/1 Running

kubernetes-dashboard-7b96874d59-w5tfj 1/1 Running

Chapter 8 OraCle COntainer engine fOr Kubernetes

469

proxymux-client-10.0.2.2 1/1 Running

proxymux-client-10.0.2.34 1/1 Running

tiller-deploy-7c4c4bfbc4-nsscm 1/1 Running

Tip if you encountered errors, please double-check if all files (.oci/config,
.kube/config, .apikeys/api.sandbox-admin.pem) are set as required, the
Cli is installed, and you have added the SANDBOX-ADMIN profile to the Kubeconfig
file as described a few paragraphs earlier.

The kubectl get nodes command lists the worker node. The master nodes are not

listed in the OKE cluster. The kubectl get namespaces command lists the Kubernetes

namespaces that can be thought of as a convenient way to isolate different environments

within the same physical cluster. Various Kubernetes objects such as pods or services

exist in the scope of a particular namespace. The kube-system namespace is used to host

the Kubernetes network proxy (kube-proxy-) and the cluster feature add-ons such as

the Container Networking Interface plugin pods (kube-flannel-) or cluster DNS pods

(kube-dns-). You can list these pods using the kubectl get pods command with the

namespace parameter -n set to the kube-system value.

The output of these three commands actually proves that you were successfully

authenticated by the Kubernetes OCI Authorizer. But how powerful is the given user

in terms of the Kubernetes APIs? Is there any way to inspect that? Yes, there is. A

straightforward one is the auth can-i Kubernetes API call. You can make this call using

kubectl like this:

[opc@dev-vm ~]$ kubectl auth can-i create namespace --all-namespaces

Yes

[opc@dev-vm ~]$ kubectl auth can-i '*' '*' --namespace=default

yes

The first execution of the command asks the Kubernetes API whether the user on

whose behalf the kubectl calls are made is entitled to create a Kubernetes namespace. The

answer is self-explanatory, isn’t it? The second command uses the * wildcard to inspect

whether all kinds of actions are allowed for the given user in the default namespace.

As a matter of fact, as I mentioned, the sandbox-admin user should be able to

perform all kinds of operations on the Kubernetes API for this cluster because he

belongs to the Sandbox compartment administrators IAM group and, based on this, is

Chapter 8 OraCle COntainer engine fOr Kubernetes

470

considered by the Kubernetes OCI Authorizer as a cluster admin for that cluster. Let’s

verify it.

[opc@dev-vm ~]$ kubectl auth can-i '*' '*' --all-namespaces

Yes

This is all correct. The sandbox-admin user is authorized to perform all operations on

all Kubernetes objects no matter in which Kubernetes namespace they reside.

 Sandbox Namespace
Kubernetes namespaces can be used to isolate different environments within the

same physical cluster. Most Kubernetes resources are namespace-scoped, and you are

required to specify the namespace while creating a particular resource such as a pod

or service. Namespaces are also useful during Kubernetes service name resolution

with Kubernetes DNS because the FQDN of a Kubernetes services does include its

namespace. We would like sandbox-user to be able to perform actions such as creating

Kubernetes objects such as pods, services, and deployments, but only in the scope of a

dedicated Kubernetes namespace. Last but not least, there are various quotas you can

set to impose consumption limits by Kubernetes resources in a particular namespace.

Let’s create a new Kubernetes namespace called the dev-sandbox namespace.

[opc@dev-vm ~]$ cd oci-book/chapter08/3-kubernetes/platform

[opc@dev-vm ~]$ kubectl create -f dev-sandbox-namespace.yaml

namespace/dev-sandbox created

We have used the kubectl create command to create a new Kubernetes namespace

resource as defined in a YAML Kubernetes object descriptor. We passed the relative path

to the file using the -f parameter. Listing 8-11 shows the YAML file.

Listing 8-11. dev-sandbox-namespace.yaml

apiVersion: v1

kind: Namespace

metadata:

 name: dev-sandbox

 labels:

 environment: dev

Chapter 8 OraCle COntainer engine fOr Kubernetes

471

The new Kubernetes object is of a Namespace kind, uses dev-sandbox as its name,

and is labeled with a custom environment label with the value set to dev. Because of the

pluggable and extendable nature of the Kubernetes platform, labels are often a primary

means to associate various objects. In this case, we are not going to use this particular

label, but I took the opportunity to show you how to tag a Kubernetes object. You can

now use kubectl to list and describe the newly created namespace.

[opc@dev-vm ~]$ kubectl get namespaces

NAME STATUS AGE

default Active 15h

dev-sandbox Active 41m

kube-public Active 15h

kube-system Active 15h

[opc@dev-vm ~]$ kubectl describe namespace dev-sandbox

Name: dev-sandbox

Labels: environment=dev

Annotations: <none>

Status: Active

No resource quota.

No resource limits.

[opc@dev-vm ~]$ exit

Now, with the new namespace set, we can prepare the sandbox-user user to connect

to the Kubernetes API.

 Connecting As Developer
We have already learned that to talk to the Kubernetes API using kubectl, we have

to possess a kubeconfig file. Furthermore, you’ve also seen that the OKE client

authentication mechanism assumes that tokens are dynamically generated using the

OCI CLI in the background. Based on that fact, we uploaded the CLI configuration and

API signing key for the sandbox-admin user. Earlier in this chapter, we employed the ce

cluster create- kubeconfig CLI to generate the kubeconfig for the sandbox-admin user.

The command was issued on behalf of the sandbox-admin user, thanks to the presence

of the SANDBOX- ADMIN profile in the CLI configuration file. In this section, we are going

Chapter 8 OraCle COntainer engine fOr Kubernetes

472

to let the sandbox-user generate a personal kubeconfig file. It is rather clear that not

every IAM user should be allowed to generate personal kubeconfig files. To generate a

kubeconfig file, the OCI API requires the GetClusterKubeconfig permission set for the

IAM user on whose behalf the API is called. This permission is included with the use

clusters IAM policy verb. Let’s create a new policy that allows sandbox-users to use all

OKE clusters in the Sandbox compartment. Even though the policy is intended for the

members of the sandbox-users group, we are executing the CLI command as sandbox-

admin using the SANDBOX-ADMIN profile like this:

$ TENANCY_OCID=`cat ~/.oci/config | grep tenancy | sed 's/tenancy=//'`

$ echo $TENANCY_OCID

ocid1.tenancy.oc1..aa.........3yymfa

$ cd ~/git

$ cd oci-book/chapter08/3-kubernetes

$ cd policies

$ oci iam policy create --name sandbox-users-containers-policy

--description "Containers-related policy for regular Sandbox

users" --statements "file://sandbox-users.containers.policy.json"

--profile SANDBOX-ADMIN

{

 "data": {

 ...

 "lifecycle-state": "ACTIVE",

 "name": "sandbox-users-containers-policy",

 "statements": [

 "allow group sandbox-users to use clusters in compartment Sandbox"

],

 ...

}

Listing 8-12 presents the contents of the JSON file we used to create the new IAM

policy. As I said before, we are giving the right to use all OKE clusters in the Sandbox

compartment to the members of the sandbox-users group. This set of permissions

includes the right to generate a personal kubeconfig file as well.

Chapter 8 OraCle COntainer engine fOr Kubernetes

473

Listing 8-12. sandbox-users.containers.policy.json

[

 "allow group sandbox-users to use clusters in compartment Sandbox"

]

We are now ready to execute the ce cluster create-kubeconfig CLI command on

behalf of the sandbox-user user by applying the SANDBOX-USER CLI profile like this:

$ oci ce cluster create-kubeconfig --cluster-id $CLUSTER_OCID --file

~/.kube/sandbox-user.config --region $REGION --profile SANDBOX-USER

New config written to the file /Users/mjk/.kube/sandbox-user.config

$ chmod 600 ~/.kube/sandbox-user.config

We have to amend the newly generated kubeconfig file by setting the correct OCI CLI

profile. Please edit the sandbox-user.config file and add the SANDBOX-USER profile like

this:

...

users:

- name: user-c2gmyzqguzt

 user:

 exec:

 apiVersion: client.authentication.k8s.io/v1beta1

 args:

 - ce

 - cluster

 - generate-token

 - --profile

 - SANDBOX-USER

 - --cluster-id

...

All in all, at this stage, we have two configuration files.

$ ls -l ~/.kube | awk '{print $1, $9}'

-rw------- sandbox-admin.config

-rw------- sandbox-user.config

Chapter 8 OraCle COntainer engine fOr Kubernetes

474

Now, upload the newest kubeconfig file to the developer instance.

$ scp -i ~/.ssh/oci_id_rsa ~/.kube/sandbox-user.config opc@$DEV_VM_PUBLIC_

IP:/home/opc/.kube

sandbox-user-config 100% 3669 262.9KB/s 00:00

We have to extend the OCI CLI configuration on the dev-vm by adding the

SANDBOX-USER profile. Let’s do it locally and upload it again to replace the previous

version.

$ cat ~/.oci/config | grep -A 4 "\[SANDBOX-USER\]" >> ~/.oci/devvm.config

$ cat ~/.oci/config | grep tenancy >> ~/.oci/devvm.config

$ cat ~/.oci/config | grep region >> ~/.oci/devvm.config

$ scp -i ~/.ssh/oci_id_rsa ~/.oci/devvm.config opc@$DEV_VM_PUBLIC_IP:/home/

opc/.oci/config

devvm.config 100% 656 5.2KB/s

Last but not least, we need to upload the API signing key for the sandbox-user.

$ scp -i ~/.ssh/oci_id_rsa ~/.apikeys/api.sandbox-user.pem opc@$DEV_VM_

PUBLIC_IP:/home/opc/.apikeys/api.sandbox-user.pem

api.sandbox-user.pem 100% 1766 13.7KB/s

Let’s connect to the developer machine.

$ ssh -i ~/.ssh/oci_id_rsa opc@$DEV_VM_PUBLIC_IP

At this moment, there should be two kubeconfig files in the ~/.kube directory on the

developer machine:

[opc@dev-vm ~]$ chmod 600 ~/.kube/sandbox-user.config

[opc@dev-vm ~]$ ls -l ~/.kube | grep config | awk '{print $1, $9}'

-rw-------. config

-rw-------. sandbox-user.config

You are going to use the --kubeconfig parameter to instruct the kubectl tool which

file it should use, as illustrated in Figure 8-26. If you leave the parameter unset, the

~/.kube/config file will be selected by default.

Chapter 8 OraCle COntainer engine fOr Kubernetes

475

Let’s try to list the pods in the dev-sandbox namespace, this time on behalf of the

sandbox-user. Remember to choose the appropriate kubeconfig file by setting the

--kubeconfig parameter like this:

[opc@dev-vm]$ kubectl --kubeconfig ~/.kube/sandbox-user-config get pods -n

dev-sandbox

Error from server (Forbidden): pods is forbidden: User "ocid1.user.oc1..

aa.........dzqpxa" cannot list resource "pods" in API group "" in the

namespace "dev-sandbox"

The response you received clearly states that the given user is not entitled to perform

this kind of operation. The sandbox-user user belongs to a group that does not have the

manage clusters policy assigned. As a result, this particular user has no predefined role

set in the k8s-cluster OKE cluster. We have to explicitly bind the user to a role. We are

going to create a role binding that binds the sandbox-user to the edit role, solely in the

scope of the dev-sandbox namespace. The edit role is a predefined Kubernetes role that

gives write-read access over most types of Kubernetes objects in a particular namespace

but does not allow the user to create role bindings.

Figure 8-26. Kubeconfig files

Chapter 8 OraCle COntainer engine fOr Kubernetes

476

We are now going to create a Rolebinding Kubernetes object that binds the

sandbox-user to the predefined edit role in the context of the dev-sandbox namespace.

You have to execute the kubectl create rolebinding on behalf of the sandbox-admin

by skipping the --kubeconfig parameter like this:

[opc@dev-vm]$ SANDBOX_USER_OCID=ocid1.user.oc1..aa.........dzqpxa

[opc@dev-vm]$ kubectl create rolebinding sandbox-users-binding

--clusterrole=edit --namespace=dev-sandbox --user=$SANDBOX_USER_OCID

rolebinding.rbac.authorization.k8s.io/sandbox-users-binding created

We can try to list the pods in the dev-sandbox namespace again. Remember to set

the --kubeconfig parameter to run the command as the sandbox-user user.

[opc@dev-vm]$ kubectl --kubeconfig ~/.kube/sandbox-user-config get pods -n

dev-sandbox

No resources found.

The No resources found message proves that we were able to call Kubernetes API

as sandbox-user.

For the sandbox-user user, we expect to execute all kubectl commands only within

the scope of the dev-sandbox namespace. Instead of using the -n parameter explicitly,

you can add the default namespace to your config file like this:

[opc@dev-vm]$ cat ~/.kube/sandbox-user.config

...

contexts:

- context:

 cluster: cluster-...

 namespace: dev-sandbox

 user: user-...

 name: context-...

...

Finally, we are ready to deploy some pods to our OKE cluster.

Chapter 8 OraCle COntainer engine fOr Kubernetes

477

 Pods
As you remember, earlier in this chapter, you containerized the UUID API and pushed

the uuid:1.0 Docker image to the OCI Registry. We are now going to create a Kubernetes

pod based on this image. We will do it by issuing a YAML descriptor that defines a new

single-container pod and its container image. We need to remember that we used a

private OCIR repository for the uuid:1.0 image. From the OCIR perspective, an OKE

cluster is just another client, and, to successfully pull an image, it has to authenticate

using an Auth Token. You can store the token in a Kubernetes object of a secret type.

This lets you reference this secret while creating Kubernetes pods, which are supposed

to pull images from one or more container repositories in a given registry. In our case,

the secret will encapsulate the regional OCIR endpoint, IAM user name, and the Auth

Token for that user. Consequently, Kubernetes will be able to pull images only from the

repositories that can be accessed by the particular IAM user. To create a single- container

pod, we are going to use kubectl create with a simple YAML descriptor that defines the

pod. The process is conceptually illustrated in Figure 8-27.

Figure 8-27. Token and secret

Chapter 8 OraCle COntainer engine fOr Kubernetes

478

In this section, all kubectl calls will be done on behalf of the sandbox-user user.

To save us from unnecessary typing, we can override the default kubeconfig path by

setting the KUBECONFIG environment variable. Set and export the variable to point to the

kubeconfig file that belongs to the sandbox-user user like this:

[opc@dev-vm]$ export KUBECONFIG=~/.kube/sandbox-user.config

You will use the kubectl create secret command to create a new Secret object

within the dev-sandbox namespace. The Secret object will be called sandbox-user-

secret, be of the docker-registry type, and contain all the information that Kubernetes

needs to access the OCIR private repositories that stores the uuid:1.0 container image,

namely:

• Regional OCIR registry URL

• IAM User

• Auth Token for the IAM user

I am using shell variables to let you simply copy the kubectl create secret

command after having adapted the variable values. Remember to use the OCIR region

code for the OCIR_REGION variable, your tenancy namespace for the OCI_TENANCY_

NAMESPACE, and the Auth Token you have generated for the sandbox-user user.

[opc@dev-vm]$ OCI_TENANCY_NAMESPACE=jakobczyk

[opc@dev-vm]$ OCIR_REGION=fra

[opc@dev-vm]$ OCI_USER=sandbox-user

[opc@dev-vm]$ OCI_USER_TOKEN=”B8.E_Ry7oOtN1KF0do9x”

[opc@dev-vm]$ kubectl create secret docker-registry sandbox-user-secret

--docker-server=$OCIR_REGION.ocir.io --docker-username="$OCI_

TENANCY_NAMESPACE/$OCI_USER" --docker-password="$OCI_USER_

TOKEN" -n dev-sandbox

secret/sandbox-user-secret created

Caution While working with the OCir, be careful not to confuse the tenancy
name with the tenancy namespace. Make sure you use the tenancy namespace for
the Kubernetes secret that will be used to gain access to the OCir.

Chapter 8 OraCle COntainer engine fOr Kubernetes

479

We can display the secrets that exist in a particular namespace like this:

[opc@dev-vm]$ kubectl get secrets -n dev-sandbox

NAME TYPE DATA AGE

default-token-wg574 kubernetes.io/service-account-token 3 3d1h

sandbox-user-secret kubernetes.io/dockerconfigjson 1 51s

The newly created sandbox-user-secret of the kubernetes.io/dockerconfigjson

type stores all the data required to access OCIR as the sandbox-user user.

We are now going to create a single-container pod based on the uuid:1.0 container

image. All you need to do is to execute the kubectl create command using the uuid-

pod.yaml file that defines the new pod. A few moments ago, you overrode the default

kubeconfig path using the environment variable. This means all kubectl commands

are invoked as the sandbox-user user. You have to create the pod in the dev- sandbox

namespace; otherwise, the operation fails. Create the pod like this:

[opc@dev-vm]$ cd oci-book/chapter08/3-kubernetes/platform

[opc@dev-vm]$ sed -i "s/OCIR_REGION/$OCIR_REGION/; s/OCI_TENANCY_

NAMESPACE/$OCI_TENANCY_NAMESPACE/" uuid-pod.yaml

[opc@dev-vm]$ kubectl create -f uuid-pod.yaml -n dev-sandbox

pod/uuid-pod created

[opc@dev-vm]$ kubectl get pods -n dev-sandbox

NAME READY STATUS RESTARTS AGE

uuid-pod 1/1 Running 0 8s

Tip if you see the errorimagepull status or the imagepullbackOff status instead
of the running status, there is probably something wrong with the token. Make
sure you put the token in quotes while setting the OCI_USER_TOKEN variable.

Listing 8-13 presents the YAML file used to create the new pod. The metadata section

is used to place the object in a particular namespace and set the name of the object. The

spec section contains the container definition and the name of the Secret object to be

used when pulling the image. The image name references a properly tagged uuid:1.0

container image. We used the sed command to replace two placeholders denoted in

capitalized letters inside the YAML file with your OCIR region and tenancy namespace.

Chapter 8 OraCle COntainer engine fOr Kubernetes

480

Listing 8-13. uuid-pod.yaml

apiVersion: v1

kind: Pod

metadata:

 name: uuid-pod

 namespace: dev-sandbox

spec:

 containers:

 - image: OCIR_REGION.ocir.io/OCI_TENANCY_NAMESPACE/sandbox/uuid:1.0

 name: uuid-container

 ports:

 - containerPort: 5000

 protocol: TCP

 imagePullSecrets:

 - name: sandbox-user-secret

Honestly speaking, a pod alone does not give us any value-added. We know it runs

an UUID API, but we cannot reach its endpoint in a straightforward way. Let’s delete

this pod.

[opc@dev-vm]$ kubectl delete pod uuid-pod -n dev-sandbox

pod "uuid-pod" deleted

 Deployments and Services
A containerized application is nearly always more than just a lonely single-container

pod. Most containerized applications, especially those that are stateless, are expected

to be able to scale horizontally and expose service endpoints to service consumers.

A service consumer can be thought of as other containerized applications running in

other pods within the same cluster or external systems or clients coming from the public

Internet. To control and conveniently manage the service side of a set of pod clones,

you will use the Service Kubernetes object. The Service object decouples somewhat the

static side that represents a web service from the service implementation provided by a

set of pods. One of the reasons for this is that pods can be scaled in and out dynamically.

At the same time, the service side is supposed to remain unaltered to ease service

discovery. Furthermore, the Service object is responsible for properly load balancing

Chapter 8 OraCle COntainer engine fOr Kubernetes

481

the incoming traffic. To manage operations on a set of pods such as the upgrade strategy

and maintaining the number of healthy pods as expected, you will use the Deployment

Kubernetes object. The Deployment object creates a ReplicaSet that keeps a steady

number of identical pods and replaces these pods that enter the unhealthy state.

Moreover, it is careful about the way containers are updated to the newer images by

using various upgrade strategies. Figure 8-28 illustrates a simple collaboration between

these Kubernetes objects.

Assuming that you are still on development instance, the KUBECONFIG variable is set

as earlier, and you are still in the 3-kubernetes/platform directory and create a set of

Kubernetes objects using the kubectl create command with uuid-deployment.yaml

like this:

[opc@dev-vm] $ sed -i "s/OCIR_REGION/$OCIR_REGION/; s/OCI_TENANCY_

NAMESPACE/$OCI_TENANCY_NAMESPACE/" uuid-deployment.yaml

[opc@dev-vm] $ kubectl create -f uuid-deployment.yaml -n dev-sandbox

deployment.apps/uuid-dpm created

service/uuid-srv created

Figure 8-28. Stateless service on Kubernetes

Chapter 8 OraCle COntainer engine fOr Kubernetes

482

Listing 8-14 presents the file uuid-deployment.yaml file that creates the associated

Kubernetes objects, namely, Service, Deployment, ReplicaSet, and Pods that host

containers based on the uuid:1.0 container image pulled from the tenancy’s OCIR. All

pods are tagged with the app=uuid label. The Service object uses the tag-based selector

app:uuid to learn where to route and distribute the traffic incoming from its dedicated

Oracle Cloud Infrastructure load balancer. The load balancer is created dynamically if

the type of the Service object is set to LoadBalancer.

Listing 8-14. uuid-deployment.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: uuid-dpm

 namespace: dev-sandbox

spec:

 replicas: 2

 selector:

 matchLabels:

 app: uuid

 template:

 metadata:

 labels:

 app: uuid

 spec:

 imagePullSecrets:

 - name: sandbox-user-secret

 containers:

 - name: uuid-container

 image: OCIR_REGION.ocir.io/OCI_TENANCY_NAMESPACE/sandbox/uuid:1.0

 ports:

 - containerPort: 5000

 protocol: TCP

Chapter 8 OraCle COntainer engine fOr Kubernetes

483

apiVersion: v1

kind: Service

metadata:

 name: uuid-srv

 namespace: dev-sandbox

spec:

 type: LoadBalancer

 selector:

 app: uuid

 ports:

 - port: 80

 targetPort: 5000

You can use kubectl get commands to display the newly created objects.

[opc@dev-vm]$ kubectl get pods -n dev-sandbox -o wide

NAME READY STATUS IP NODE

uuid-dpm-78cf484f96-rj4br 1/1 Running 10.244.1.7 10.0.2.2

uuid-dpm-78cf484f96-wg2zw 1/1 Running 10.244.0.7 10.0.2.34

[opc@dev-vm]$ kubectl get replicasets -n dev-sandbox

NAME DESIRED CURRENT READY

uuid-dpm-78cf484f96 2 2 2

[opc@dev-vm]$ kubectl get services -n dev-sandbox

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

uuid-srv LoadBalancer 10.96.26.62 130.61.195.20 80:31475/TCP

The newly created Service object is of the LoadBalancer type. This results in the

provisioning of a new highly available public OCI load balancer that spans the two

subnets you have set for cluster load balancers. The EXTERNAL-IP column shows the

public IP address of the load balancer. If you see Pending, just wait a few moments. Your

load balancer is being launched. In my case, the public IP address of the load balancer

is 130.61.195.20, and your address probably will be different. Write it down. We will need

it in a few moments. In the meantime, you can observe the load balancer in the OCI

Console, as shown in Figure 8-29. You may have to wait a few moments to see Overall

Health set to OK. Sometimes, this flag is initially set to Unknown for a slightly longer

period of time, even though the load balancer is fully operational. Figure 8-30 shows the

Chapter 8 OraCle COntainer engine fOr Kubernetes

484

detailed view of the load balancer, including its shape, public IP address, VCN, and two

public subnets you’ve chosen for load balancers, while launching your OKE cluster.

If you are still on the developer instance, disconnect.

[opc@dev-vm]$ exit

Let’s send a series of identical requests to the external IP address of the service. You

will have to replace the LB_PUBLIC_IP value with the IP address that has been assigned to

your load balancer before running these commands:

$ LB_PUBLIC_IP=130.61.195.20

$ for i in {1..10}; do curl $LB_PUBLIC_IP:80/identifiers; done

{"generator":"uuid-dpm-78cf484f96-wg2zw","uuid":"a5bf.......d471"}

{"generator":"uuid-dpm-78cf484f96-wg2zw","uuid":"f2a4.......b902"}

{"generator":"uuid-dpm-78cf484f96-rj4br","uuid":"564c.......1496"}

{"generator":"uuid-dpm-78cf484f96-rj4br","uuid":"2473.......f7f9"}

{"generator":"uuid-dpm-78cf484f96-rj4br","uuid":"9709.......bc47"}

{"generator":"uuid-dpm-78cf484f96-wg2zw","uuid":"cffd.......22d9"}

{"generator":"uuid-dpm-78cf484f96-wg2zw","uuid":"6bb3.......5285"}

Figure 8-29. Kubernetes service load balancer

Figure 8-30. Kubernetes service load balancer details

Chapter 8 OraCle COntainer engine fOr Kubernetes

485

{"generator":"uuid-dpm-78cf484f96-rj4br","uuid":"6b02.......cafc"}

{"generator":"uuid-dpm-78cf484f96-rj4br","uuid":"fdb5.......dcf7"}

{"generator":"uuid-dpm-78cf484f96-wg2zw","uuid":"ee94.......b038"}

The generator field is populated based on the name of the pod that received the

request. Looking at the results, you should see a rather equal split between the two pods

that back our service. If you want, you could scale out the number of containerized

application instances to dozens and even hundreds in a few seconds.

What we have done with Oracle Kubernetes Engine in this chapter only scratches

the surface of what can be done using the cloud-based managed Kubernetes. Feel free

to experiment, and when you are ready to proceed to the next chapter, do not forget to

terminate the cluster and developer instance to spare your resource consumption.

 Cleanup
There are three groups of resources we need to terminate in the proper order.

• Kubernetes objects and their related OCI resources

• OKE cluster and the related resources

• The dev-vm compute instance and related resources

First, we have a Kubernetes service that was created with the provisioning of a load

balancer. We need to delete this service to remove the corresponding load balancer.

Let’s connect to the developer instance again and use kubectl to delete the Kubernetes

objects we’ve just successfully tested.

$ ssh -i ~/.ssh/oci_id_rsa opc@$DEV_VM_PUBLIC_IP

[opc@dev-vm]$ export KUBECONFIG=~/.kube//sandbox-user.config

[opc@dev-vm]$ kubectl delete all --all -n dev-sandbox

pod "uuid-deployment-78cf484f96-rj4br" deleted

pod "uuid-deployment-78cf484f96-wg2zw" deleted

service "uuid-service" deleted

deployment.apps "uuid-deployment" deleted

[opc@dev-vm]$ exit

Chapter 8 OraCle COntainer engine fOr Kubernetes

486

The second step involves terminating the cluster. Enter the infrastructure code

directory, and issue the terraform destroy command, properly referencing the

sandbox- admin.tfvars file to perform this operation on behalf of the sandbox-admin

user.

$ cd ~/git

$ cd oci-book/chapter08/3-kubernetes/infrastructure

$ terraform destroy -var-file="$HOME/sandbox-admin.tfvars" -auto-approve

Finally, you can move to the last cleanup step for this chapter and terminate the

dev-vm compute instance.

$ source ~/tfvars.env.sh

$ cd ~/git

$ cd oci-book/chapter08/1-devmachine

$ terraform destroy -auto-approve

 Summary
In this chapter, you experienced the end-to-end process of containerizing an application.

First, we built a multilayered container image based on the UUID API that was originally

built and deployed on compute instances as an operating system service in Chapter 2.

We tested containers based on this image locally and pushed them to the OCIR private

repository. Next, we discussed the need for container orchestration based on the most

popular open source container platform called Kubernetes. Then, we prepared and

provisioned a managed Kubernetes cluster with the use of Oracle Kubernetes Engine.

Following that, you learned how to work with the Kubernetes API and manage granular

access for IAM users. Finally, you created a complete set of Kubernetes objects to

properly manage a stateless containerized application based on the container image you

prepared at the beginning of this chapter.

In the next chapter, we will discuss what does cloud-native architecture actually

means nowadays.

Chapter 8 OraCle COntainer engine fOr Kubernetes

487
© Michał Tomasz Jakóbczyk 2020
M. T. Jakóbczyk, Practical Oracle Cloud Infrastructure, https://doi.org/10.1007/978-1-4842-5506-3_9

CHAPTER 9

Cloud-Native Architecture
In the recent years, the degree and pace of changes on the software scene have

accelerated like never before. The open source movement ignited a large number of

scattered and often independent teams racing to bring new software components, tools,

platforms, protocols, and services to market at an incredible pace. Cloud computing

removed many hardware-related entry barriers by allowing teams to self-provision

virtualized hardware resources in a matter of seconds. With cloud- provider- managed

hardware capabilities, both virtualized and even bare-metal, available at one’s fingertips,

nearly anyone can launch and develop a small software project. Containerization, briefly

covered in the previous chapter, often enables new approaches in designing applications

and requires the presence of new supplementary tools to make the solutions production-

ready. There are old questions to be answered such as how to solve storage, networking,

messaging, and service discovery challenges, this time in the age of containers. There

are new waters to explore—service mesh, container registries, and schedulers, to name a

few. Let’s list the three information age turning points that considerably impact the way

we architect new-generation software solutions. These are as follows:

• Open source

• Cloud computing

• Containerization

The growing number of open source contributors and the ease of launching cloud-

based software projects sparked software development on an unprecedented scale. The

arrival of containerization brought demand for new types of software components and the

need to adapt some of the existing tools. To roll out a production-ready software solution,

you usually have to carefully pick the existing components of various types, add your

in-house application codebase, and properly integrate everything. A large number of

actively developed, usually not-yet-mature, and often competing container- oriented,

488

components, utilities, platforms, protocols, and services are making it more and more

difficult for companies to choose what they need, as illustrated in Figure 9-1.

Having too many approaches for solving the same kind of problems and a plethora of

competing and often immature open source software projects can lead to some degree

of chaos. To avoid running into troubles, there arises the need for standardization.

This is similar to having design patterns that address common software development

challenges. There are a few types of standards to consider. Some standards are crucial

to get software components that need to interact to speak the same language. For

example, the OpenAPI specification provides a standard for defining REST APIs using

YAML or JSON documents that are readable both by humans and by machines. The

CloudEvents specification is aimed at defining a common event structure so that a

broad range of applications are able to seamlessly understand others’ events. Other

standards such as Container Network Interface (CNI) and Container Storage Interface

(CSI) focus on defining interfaces that will let vendor-specific plugins communicate with

various container runtimes in a unified way. One of the biggest challenges that arises

especially for tech leads and technical architects is to deal with the flood of open source

projects. People who hold these roles are confronted with questions on what open

source projects to rely on when designing and building their cloud-based solutions.

Because the majority of these projects are relatively new and still immature, there is a

risk that, as the time goes by, some projects are abandoned or lose ground to their open

source competition. In other words, it would be good to have some kind of reference

architecture agreed on by the industry, in other words, a collection of graduated

projects that meet reasonable requirements and are safe choice to include, while

Figure 9-1. Information age turning points

Chapter 9 Cloud-Native arChiteCture

489

designing cloud- oriented solutions. To address this need, the leading cloud providers,

independent software vendors, tech-driven companies, and academic and nonprofit

organizations gathered together and created Cloud Native Computing Foundation

(CNCF). CNCF hosts the entire ecosystem of cloud- and container-oriented open source

projects and supports them during their evolution. Projects that are accepted to join

the CNCF project portfolio are graded based on their maturity and adoption. There

are three levels of grades: sandbox, incubation, and graduation. For tech leads and

architects, CNCF provides a convenient landscape of projects to consider while choosing

the components for the architected solutions, as illustrated in Figure 9-2. Furthermore,

CNCF coordinates global events such as KubeCon + CloudNativeCon and supports a

broad network of cloud-native Meetups around the world.

Figure 9-2. Choosing cloud-native projects while architecting a cloud solution

 Cloud Native
What is cloud native? Looking at the word native, we could assume that a cloud-native

tool or a component is deliberately designed for and built to fit the cloud-oriented

industry-agreed reference architecture. We need examples to better understand this

term and the various types of tools, applications, and components that represent the

cloud- native ecosystem. If we refer to the CNCF definition of cloud native, we will learn

the following:

Cloud native technologies empower organizations to build and run scal-
able applications in modern, dynamic environments such as public, pri-
vate, and hybrid clouds. Containers, service meshes, microservices,
immutable infrastructure, and declarative APIs exemplify this approach.

Chapter 9 Cloud-Native arChiteCture

490

The most up-to-date definition is available on GitHub at https://github.com/cncf/

toc/blob/master/DEFINITION.md.

The list that exemplifies cloud-native technologies starts with containers. As you

know, containers are meant to work in the same way regardless of the underlying

host platform. To run, containers require a container runtime. One of the graduated

CNCF projects is containerd. As discussed in Chapter 8, containerd is the industry-

standard container runtime that supervises the lifecycle of containers, taking care of

container execution, image management, and host-system-related tasks such as the

underlying storage or network attachments. Even if you’ve never heard of containerd,

you have already worked with it, actually indirectly, because it is used, under the hood,

by Docker. A modern-architecture solution is usually composed of a large number of

containerized applications that have to interact with each other and be easy to scale out

or be rescheduled to other underlying host nodes in the case of failure. In other words,

their lifecycle must be taken care of in a broader sense and in a wider context than just

the scope of a single host machine. Kubernetes was the first CNCF-graduated project

donated to the foundation by Google. Its task is to provide a pluggable platform for

running and managing containerized applications across multiple hosts. Kubernetes

takes care of the container lifecycle and makes sure that the desired state is always met.

For example, if one of the host nodes abruptly fails, the containerized applications on

that node will be eventually rescheduled (re-created) on another worker node to meet

the expected count of replicas. What Kubernetes does at its core is called container

orchestration and scheduling. From a developer point of view, it comes with other

crucial features such as API-driven declarative Kubernetes objects that encapsulate

or abstract application components such as grouping containers called pods, services,

volumes, jobs, deployments, and many more. You worked with a few of these types in

the previous chapter. Containerized applications are based on multilayered container

images. The images have their own lifecycle and are stored in container image registries.

Container platforms such as Kubernetes dynamically fetch images from the image

registries to create containers as defined by the expected state declared by developers.

CNCF hosts image registry projects such as Docker Registry, JFrog Artifactory, Quay,

and Harbor, to name a few. Various nonfunctional aspects of the interactions between

Chapter 9 Cloud-Native arChiteCture

https://github.com/cncf/toc/blob/master/DEFINITION.md
https://github.com/cncf/toc/blob/master/DEFINITION.md

491

containerized services such as security or observability can be handled using lightweight

proxies installed as sidecar containers within each Kubernetes pod. These proxies form

another layer called a service mesh. A service mesh simplifies communication between

containerized services and provides out-of-the-box features such as service discovery,

retries, load balancing, or circuit-breaking. Using a service mesh removes the burden

of implementing these nonfunctional interservice communication tasks from the

developer. Linkerd is a CNCF-incubating service mesh project. You may also have heard

about Istio, which is another service mesh project hosted by CNCF. A new trending

model of running applications with no server management at all is called serverless

and belongs to the cloud-native ecosystem as well. Fn Project is an exemplification of a

serverless platform built from scratch for containers. Container runtimes, orchestration

platforms, image registries, service mesh, or serverless frameworks are just the tip of

the iceberg. To bring a complete cloud-based solution into existence, there are many

other types of cloud-native components to be included such as service discovery, key

management, streaming, messaging, continuous delivery, API gateways, monitoring,

logging, tracing, and others.

CNCF groups the open source projects it hosts together with selected proprietary,

but still ecosystem-related, solutions using a convenient map called CNCF Cloud Native

Landscape available at https://landscape.cncf.io. This map is supposed to help

tech leads and architects follow a rapidly changing and evolving cloud-native stack. To

give you the initial impression of how broad and diverse this ecosystem is, take a look at

Figure 9-3.

Chapter 9 Cloud-Native arChiteCture

https://landscape.cncf.io

492

This book is about Oracle Cloud. You learned about containers in the previous

chapter. Now, it is time to experience the impact of cloud-native open source projects on

Oracle Cloud.

Oracle is a CNCF platinum member. It has contributed a container-based serverless

open source project called the Fn Project to the CNCF cloud-native ecosystem. Oracle

Cloud features Oracle Kubernetes Engine, a fully managed, hosted Kubernetes engine

certified by CNCF. You worked with OKE in the previous chapter. Oracle Linux comes

with a certified Kubernetes distribution available as part of Oracle Container Services

for use with Kubernetes. Last but not least, two leading relational databases, the open

source MySQL and the proprietary Oracle Database, are referenced in the CNCF

landscape. Furthermore, Oracle Cloud uses to some extent other CNCF open source

projects. For example, Oracle Cloud Infrastructure events are compliant with an event

structure as defined by the industry-standard CNCF project called CloudEvents.

It is time to do some hands-on exercises. We are about to delve into Oracle

Functions, which is a function as a service (FaaS) based on the open source Fn Project.

In other words, let’s take a look at serverless computing.

Figure 9-3. CNCF cloud-native landscape

Chapter 9 Cloud-Native arChiteCture

493

 Serverless
The term serverless is becoming another cloud computing buzzword. You might think

that the name implies that executing a serverless application does not involve any

servers. Well, this is a bit misleading. There are servers in the backend. As always.

What this term really emphasizes is that operating a serverless application allows you

to neglect the backend- related aspects. The runtime and application’s lifecycle are

completely managed by a particular serverless framework or managed serverless service.

The latter is commonly associated with the term function as a service (FaaS). “Function”

because serverless applications are usually considered as loose packages of stateless

functions. A function like that should be designed to focus on a single, rather short-

running, stateless task. A serverless framework or a managed cloud-based serverless

service typically instantiates a particular function instance only when there is a request

incoming or some function trigger activated. The instance is usually terminated as soon

as the idle time interval has elapsed to free the computing resources. In other words,

serverless function instances are not supposed to be idle. Another important aspect to

mention is that serverless functions are expected to be scalable. Therefore, a serverless

framework or a cloud-based FaaS may create many instances of the same serverless

function in order to be able to serve many parallel requests. From a developer’s point

of view, serverless implies simplicity. A serverless function is typically implemented

as a simple handler function that returns a result. Depending on the trigger, a function

may consume input or read some information on its own. For example, an HTTP-based

serverless function could process an image passed as a binary stream, apply some

relatively simple filters, and either return the result or persist it in an object storage

bucket. Another example could be a function that gets executed as soon as some

kind of cloud event is captured. A new object uploaded to a particular bucket could

generate such a cloud event, eventually triggering the function. You could come up with

many ideas for serverless functions. Just remember two key characteristics. Serverless

functions are supposed to be stateless and short-lasting. Serverless frameworks often

limit the allowed maximum function execution time. Nowadays, serverless frameworks

are expected to support multiple programming languages. This allows developers to

choose the best language for a given task or simply the one they are good at. Figure 9-4

illustrates a conceptual use of a sample serverless function. The function is triggered

by the incoming HTTP requests, and their payload data is processed and written to a

particular database table.

Chapter 9 Cloud-Native arChiteCture

494

Serverless is not limited to cloud computing. As a matter of fact, there are

frameworks that let you operate a serverless platform on your local server or

development machine. The same framework can be then used by a managed cloud-

based serverless platform. In this way, you can implement and test a function locally,

before pushing it to the compliant serverless platform in the cloud. This is exactly

how we are going to work in this chapter. First, you need to set up a client machine for

serverless development.

Figure 9-4. Serverless

Chapter 9 Cloud-Native arChiteCture

495

 Developer VM
I have prepared infrastructure code to provision a new Ubuntu-based compute instance

and a subnet required later for Oracle Functions. Please navigate to the chapter09/1-

infrastructure directory, as shown in the following:

$ cd ~/git/oci-book/chapter09/1-infrastructure

$ find . \(-name "*.tf" -o -name "*.yaml" \) | sort

./devmachine/cloud-init/ubuntu.config.yaml

./devmachine/compute.tf

./devmachine/vars.tf

./devmachine/vcn.tf

./functions/vars.tf

./functions/vcn.tf

./modules.tf

./provider.tf

./vars.tf

./vcn.tf

The devmachine module contains the cloud resource definitions required by the

compute instance that will be used for function development. The functions module is

much simpler and is basically used to create one private subnet with a dedicated security

list as well as routing table. This subnet will let us control the networking context in

which Oracle Functions will be executed. We will discuss it later, but let’s save some time

and get it provisioned together with the compute instance for function development. I

am not going to discuss each of these files because we covered analogous infrastructure

code files in earlier chapters. Like always, please set the relevant environment variables

expected by Terraform.

$ source ~/tfvars.env.sh

Next, initialize and provision the infrastructure.

$ terraform init

...

Terraform has been successfully initialized!

$ terraform apply

...

Chapter 9 Cloud-Native arChiteCture

496

Plan: 10 to add, 0 to change, 0 to destroy.

Do you want to perform these actions?

 Enter a value: yes

...

Apply complete! Resources: 10 added, 0 changed, 0 destroyed.

Outputs:

dev_machine_image_name = Canonical-Ubuntu-18.04-2019.08.14-0

dev_machine_public_ip = 130.61.88.227

functions_subnet_ocid = ocid1.subnet.oc1....

From now on, in the course of this chapter, we are going to work mainly on this

compute instance. You will be executing a lot of commands on the cloud- based instance.

These commands will be prefixed with the [ubuntu@dev-vm] command prompt. You can

verify the instance is running in the OCI Console, as shown in Figure 9-5.

Let’s go back to the terminal. Terraform outputs three values. We will need two

of them throughout this chapter, namely, the public IP of the compute instance for

functions development and the OCID of the subnet. You do not have to note the output

values. We will be using the terraform output command to read them on the fly from

the state file. The compute instance is based on an operating system image with Ubuntu.

The infrastructure code uses cloud-init to install some additional packages required

for the exercises including Docker CE as the most notable one.

Note as you recall, cloud-init executes asynchronously. You may need to wait
a minute or two before the machine is really ready. if you connect before cloud-init
has completed, you will have to reconnect afterward to get the docker commands
to work for the ubuntu user without the preceding sudo.

Figure 9-5. Compute instance for function development

Chapter 9 Cloud-Native arChiteCture

497

Please connect to the instance and execute the cat command, as shown in the

following, until you see the DEV machine is running entry in the /var/log/syslog file.

$ DEV_MACHINE_IP=`terraform output dev_machine_public_ip`

$ ssh -i ~/.ssh/oci_id_rsa ubuntu@$DEV_MACHINE_IP

Welcome to Ubuntu 18.04.3 LTS (GNU/Linux 4.15.0-1021-oracle x86_64)

[ubuntu@dev-vm]$ sudo cat /var/log/syslog | grep "DEV machine"

Sep 14 12:30:53 dev-vm cloud-init[1799]: DEV machine is running, after

86.18 seconds

To validate that the instance has been provisioned as expected, please run one of

the Docker commands such as docker version, docker images, or docker ps. There

should be no errors. If you encounter errors because of insufficient privileges, you may

need to exit and reconnect to the compute instance.

Note there is nothing against using your local computer for function
development instead of the newly provisioned cloud-based compute instance, but,
depending on your system, you may need to adapt a bit of the commands i am
using in this chapter.

As soon as the compute instance for function development is running as expected,

we are ready to proceed.

 Fn Project
Serverless functions execute on serverless platforms that isolate function developers from

the underlying infrastructure and provide all the required function lifecycle services.

CNCF lists a couple of serverless platforms as a part of its cloud-native landscape. One

of them is Fn Project. Fn Project is a container-based serverless platform that supports

multiple programming languages including Golang, Java, and Python. The project was

open sourced in 2017 and can be found on GitHub at https://github.com/fnproject,

as shown in Figure 9-6.

Chapter 9 Cloud-Native arChiteCture

https://github.com/fnproject

498

Figure 9-6. Fn Project on GitHub

We are going to implement two simple functions in Python and run them initially

on a local Fn Project installation. Later, you will take one of them and deploy it with no

code changes to Oracle Functions, which is a managed function-as-a-service platform

on Oracle Cloud.

 Installation and Configuration

First, make sure you are still connected to the newly provisioned compute instance. To

install Fn Project, you just need to execute this neat one-liner:

[ubuntu@dev-vm]$ curl -LSs https://raw.githubusercontent.com/fnproject/cli/

master/install | sh

fn version 0.5.86

 / ____/___

 / /_ / __ \

 / __/ / / / /

 /_/ /_/ /_/`

[ubuntu@dev-vm]$ fn version

Client version is latest version: 0.5.86

Server version: ?

The Fn Project client binary fn has been installed, and the ~/.fn directory tree for

client configuration files have been initialized. To proceed with local development and

testing, we need to start a local Fn server. To do so, you will use the fn start command.

Chapter 9 Cloud-Native arChiteCture

499

The local Fn server is implemented as a Docker container. The command will download

the newest container image and start the Fn server container.

[ubuntu@dev-vm]$ fn start -d

[1] 4971

Unable to find image 'fnproject/fnserver:latest' locally

latest: Pulling from fnproject/fnserver

...

Status: Downloaded newer image for fnproject/fnserver:latest

We used the -d flag (the d stands for detached mode) to execute the local Fn

server container in the background. This will allow us to continue working in the same

Terminal session.

The container-based server architecture makes Fn Project an ideal candidate for

building serverless platforms simply because it can run anywhere as a container. Let’s

see its image and the container.

[ubuntu@dev-vm]$ docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

fnproject/fnserver latest e63938b4a8e1 12 days ago 161MB

[ubuntu@dev-vm]$ docker ps

IMAGE PORTS NAMES

fnproject/fnserver:latest 2375/tcp,*:8080->8080/tcp fnserver

To see the Fn server logs at any time, you can apply the docker logs command.

[ubuntu@dev-vm]$ docker logs fnserver

time="2019-09-16T17:04:43Z" level=info msg="Registering data store provider 'sql'"

time="2019-09-16T17:04:43Z" level=info msg="Connecting to DB"

url="sqlite3:///app/data/fn.db"

...

time="2019-09-16T17:04:43Z" level=info msg="Fn serving on `:8080`"

type=full version=0.3.731

The fnserver container is created from the fnproject/fnserver image. The

fnserver performs all the metadata as well as lifecycle management tasks for functions.

Fn Project functions are deployed individually as separate container images. When

triggered, the fnserver instantiates a function-specific container based on a particular

Chapter 9 Cloud-Native arChiteCture

500

function-specific image to handle the function call. If there are parallel function calls,

the Fn server may decide to create more containers for the same function. Function

metadata, on the other hand, in the case of a local Fn Project installation, is stored in the

local filesystem using a file-based, embeddable relational database called SQLite. The

default SQLite file location is .fn/data/fn.db. If you really are curious, you can access

this function metadata database file using the sqlite3 client. This will make sense only

after we have defined and deployed some functions. At the moment, our local SQLite-

based function metadata database is still empty. Looking further, the connectivity-

related client-side configuration is stored in the form of configuration files called

contexts. The fn client will use dedicated contexts for each Fn Project platform you are

working with, no matter if the platform is local, on-premise, or cloud-based. The context

files will be stored in the .fn/contexts directory in the form of YAML files.

/home/ubuntu/.fn/

├── config.yaml
├── contexts
│ └── default.yaml
├── data
│ └── fn.db
└── iofs

Let’s use the fn tool to list all the contexts.

[ubuntu@dev-vm]$ fn list contexts

CURRENT NAME. PROVIDER API URL. REGISTRY

 Default default http://localhost:8080

Because this is a new local Fn Project installation, there is only one, actually still

incomplete and nonfunctional, context called the default context. Before we move on

and add any missing configuration to allow local function development, I would like you

to understand the three important pieces of information defined by an Fn client context.

These are the following:

• Fn Project server API endpoint of the target platform

• Container registry to store function-specific images

• Provider that defines a set of properties for the target platform

Chapter 9 Cloud-Native arChiteCture

501

The client is able to interact with multiple Fn Project platforms. At any given

moment, however, the client works with a single platform, the one defined by the current

context. To set the current context, you use the fn use context command.

[ubuntu@dev-vm]$ fn use context default

Now using context: default

As I mentioned a few moments ago, function instances are executed as containers

that are based on function-specific images. You use the fn client to deploy a function.

What does it mean to deploy a function in a container-based serverless environment?

The function deployment involves building and pushing a new function-specific

container image to a container image registry. The registry is defined by the current

context. For local development, it is sufficient to store images on the local machine. To

do so, we will use the --local option while executing the fn deploy command. Images

will be prefixed with the name set for the registry in the current contexts. Let’s use

localdev as the name. To update the current context, please use the fn update context

command like this:

[ubuntu@dev-vm]$ fn update context registry localdev

Current context updated registry with localdev

[ubuntu@dev-vm]$ fn list contexts

CURRENT NAME PROVIDER API URL REGISTRY

 * default default http://localhost:8080 localdev

We can move into developing and deploying a first function.

 Your First Function

Serverless functions are meant to be stateless and perform one, relatively short task. Fn

Project is able to run functions implemented in various programming languages. At the

time of writing, these are Java, Golang, Python, JavaScript (with Node.js), Ruby, and C#

(using .NET Core). You do not need to install any development tools for these languages.

The code will execute within function-specific containers. In addition to using Terraform

for the infrastructure code, this book is Python-oriented. To stay consistent with the

rest of code examples, we will be using Python for function development. Later, after

Chapter 9 Cloud-Native arChiteCture

502

completing the exercises from this chapter, feel free to play with other languages. For

now, let’s use the fn init command to bootstrap a Python-based function stub like this:

[ubuntu@dev-vm]$ fn init --runtime python blankfn

Creating function at: ./blankfn

Function boilerplate generated.

func.yaml created.

[ubuntu@dev-vm]$ tree blankfn/

blankfn/

├── func.py
├── func.yaml
└── requirements.txt

The fn init command was executed with the --runtime python option. As a

result, the func.py function stub has been created and uses Python as the programming

language. In addition, the command creates the func.yaml function configuration file

shown in Listing 9-1.

Listing 9-1. blankfn/func.yaml

schema_version: 20180708

name: blankfn

version: 0.0.1

runtime: python

entrypoint: /python/bin/fdk /function/func.py handler

memory: 256

The function configuration file can be used to fine-tune the function build process

and execution characteristics such as allocated memory or maximum time the function

is allowed to run. A couple of properties are used while building the function-specific

container image. For example, it is possible to adjust the base image for the function.

In the previous chapters, we already worked with the requirements.txt file. This file

is used to provide a list of Python packages your function is dependent on. You denote

which Python packages your function requires, and the pip tool installs them as a new

layer to the function-specific container image. Listing 9-2 presents the requirements.

txt file created inside the function directory. Our function stub references only the fdk

Chapter 9 Cloud-Native arChiteCture

503

Python package. The fdk package is the function developer kit for Python maintained

by Fn Project. It is primarily needed to handle the input and output of the function. If

you ever need any additional Python packages to implement a bit more sophisticated

functions, this will be the file to add them.

Listing 9-2. blankfn/requirements.txt

fdk

The cloud-init configuration, which is processed on the first boot of our compute

instance, fetches a trivial function code file called blankfn. The code is downloaded from

the code repository associated with the book and placed in the ~/functions directory. Let’s

replace the function stub created by the fn init command with the blankfn.py file like this:

[ubuntu@dev-vm]$ cp ~/functions/blankfn.py ~/blankfn/func.py

Listing 9-3 presents the code for that function.

Listing 9-3. blankfn/func.py

import io

import json

from fdk import response

def handler(ctx, data: io.BytesIO=None):

 res_str = json.dumps({"message": "blank message"})

 headers_dict={"Content-Type": "application/json"}

 rsp = response.Response(ctx, response_data=res_str, headers=headers_dict)

 return rsp

The blankfn function always returns a static text. I have created this function

to provide you with the easiest Python-based Fn Project development experience.

Generally speaking, your role as a function developer is to implement the function

handler. If you look at the code presented in Listing 9-3, you will see that the function

handler returns an fdk.response.Response object fed with the response_data string

that holds a JSON objects with a meaningless test message. Additionally, the function

handler code sets the headers dictionary set in the HTTP header. By default, if no trigger

is explicitly stated in the function’s configuration file, the HTTP trigger is applied, and we

should treat the output as an HTTP response.

Chapter 9 Cloud-Native arChiteCture

504

Before we build the function-specific container image, we have to create an

application. An application is merely a logical construct. You use the fn create app

command to register a new application in the Fn server pointed at with the current

context, which is, in our case, the local Fn server running as the fnserver container. We

will use blankapp for the new application and register it like this:

[ubuntu@dev-vm]$ fn create app blankapp

Successfully created app: blankapp

[ubuntu@dev-vm]$ fn list apps

NAME. ID

blankapp 01DMQZJPDDNG8G00GZJ0000006

The fn list apps command shows the newly registered application. We are ready

to build and deploy the function. To do so, enter the blankfn function directory and run

the fn deploy command like this:

[ubuntu@dev-vm]$ cd blankfn

[ubuntu@dev-vm]$ fn --verbose deploy --app blankapp --local

Deploying blankfn to app: blankapp

Bumped to version 0.0.2

Building image localdev/blankfn:0.0.2

FN_REGISTRY: localdev

Current Context: default

...

Successfully built 29e36845273a

Successfully tagged localdev/blankfn:0.0.2

Updating function blankfn using image localdev/blankfn:0.0.2...

Successfully created function: blankfn with localdev/blankfn:0.0.2

The fn deploy command reads the func.yaml function configuration file it finds in

the current directory to create the function-specific container image. The file that stores the

function code and the corresponding requirements.txt file are added to the container

image. Using the --local option stores the image on the client machine. If you had left it

out, the fn client would have attempted to push the image to the localdev repository on

Docker Hub, which is not our intention here. The --verbose option lets us see the output

from the image build. This is an ordinary docker build output enriched with some side

operations from the fn client. All in all, the function is ready. Let’s inspect the function

Chapter 9 Cloud-Native arChiteCture

505

metadata to confirm that everything went fine. To do so, use the fn list functions

command.

[ubuntu@dev-vm]$ fn list functions blankapp

NAME IMAGE ID

blankfn localdev/blankfn:0.0.2 01DMQZNA73NG8G00GZJ0000007

At the moment, the blankapp application references one function called blankfn.

Function instances will be created as containers based on the localdev/blankfn:0.0.2

container image. You can see the image like this:

[ubuntu@dev-vm]$ docker images | grep blank

localdev/blankfn 0.0.2 e3cdfd6089b4 2 minutes ago 344MB

At the moment, there is only the local fnserver container running, as shown by the

following docker ps command:

[ubuntu@dev-vm]$ docker ps --format '{{.Names}} [{{.Image}}] {{.Status}}'

fnserver [fnproject/fnserver:latest] Up 4 minutes

Let me repeat: function instances will be created as separate containers. The local

fnserver coordinates function containers, which are created on the fly when functions

are triggered. Equipped with that knowledge, you should know what to expect. This is

how you make your first serverless function call using the fn invoke command:

[ubuntu@dev-vm]$ fn invoke blankapp blankfn

{"message": "blank message"}

That is it. Just like that. You could say the response came from nowhere. If you are

fast enough and execute the docker ps command again, you will spot a new container

that is based on the local/blankfn:0.0.2 image.

[ubuntu@dev-vm]$ docker ps --format '{{.Names}} [{{.Image}}] {{.Status}}'

01D...00C [local/blankfn:0.0.2] Up 2 seconds (Paused)

fnserver [fnproject/fnserver:latest] Up 22 hours

This function-specific container instance was created to serve the function call. If no

further function calls arrive, the container will disappear after 30 seconds. You can use

the watch docker ps command to observe that behavior. This interval can be extended

in the function configuration file.

Chapter 9 Cloud-Native arChiteCture

506

Another interesting experiment is to send two function calls at once.

[ubuntu@dev-vm]$ fn invoke blankapp blankfn &

[1] 2903

[ubuntu@dev-vm]$ fn invoke blankapp blankfn &

[2] 2972

Listing the containers will show that this time there were two function-specific

containers created.

[ubuntu@dev-vm]$ docker ps --format '{{.Names}} [{{.Image}}] {{.Status}}'

01D...00H [local/blankfn:0.0.2] Up Less than a second (Paused)

01D...00F [local/blankfn:0.0.2] Up 1 second (Paused)

fnserver [fnproject/fnserver:latest] Up 22 hours

This was a simple way to prove that the serverless platform is natively scalable.

If we were to briefly summarize the serverless function development process for Fn

Project functions, these would be the steps to follow:

 1. Create a project stub.

 2. Implement the function handler.

 3. Adjust and optionally extend the function configuration file.

 4. Deploy the function.

The function deployment leads to two state changes in the Fn platform backend:

 1. The function metadata is placed on the Fn server.

 2. The function-specific container image is pushed to the container

image registry.

Every time the function trigger is fired, the Fn server creates or unpauses an existing

function-specific container to handle the request. The entire process from development

to execution is conceptually illustrated in Figure 9-7.

Chapter 9 Cloud-Native arChiteCture

507

Now, we are going to create a bit more meaningful function than the blankfn that

had no applicable purpose at all.

 UUID Function

After reading the previous chapters, you are now familiar with the UUID generation

function. First, you deployed it as a systemd service on a Linux-based compute instance.

This was the exercise included in the second chapter. Next, you containerized this

application and deployed it inside a Kubernetes pod on a cluster instance of Oracle

Kubernetes Engine. This was the exercise in Chapter 8. Now, we are going to use the

most lightweight deployment model for the UUID generation logic and run it as a

serverless function. As stateless, short-lasting, and specialized logic, this is a perfect

candidate to become a serverless function. At this point, it is worth mentioning that what

I’ve just described is an excellent example of the way software evolves nowadays. At the

beginning, we dealt with a dedicated compute instance where the application lifecycle

Figure 9-7. Fn Project function development and execution

Chapter 9 Cloud-Native arChiteCture

508

Figure 9-8. UUID function deployment model evolution

was bound to the operating system service managed by systemd. Next, we were able to

remove that coupling by containerizing the application and running it on the container

platform. Finally, we arrive at the most lightweight mode for such simple, specialized,

and short-lasting application logic and use serverless to delegate all function lifecycle

management to the serverless platform. This evolution is illustrated in Figure 9-8.

Let’s create a new function stub in a similar way as we did it before. This time, we are

using uuidfn for the function name.

[ubuntu@dev-vm]$ cd

[ubuntu@dev-vm]$ fn init --runtime python uuidfn

Creating function at: ./uuidfn

Function boilerplate generated.

func.yaml created.

Again, issue the following command to replace the function stub with the function

code I already prepared for you while writing this book:

[ubuntu@dev-vm]$ cp ~/functions/uuidfn.py ~/uuidfn/func.py

Listing 9-4 shows the UUID generation function code.

Chapter 9 Cloud-Native arChiteCture

509

Listing 9-4. uuidfn/func.py

import io

import json

import uuid

from fdk import response

def handler(ctx, data: io.BytesIO=None):

 res_dict = {}

 try:

 # Generate UUID

 res_dict["generator_uuid"] = str(uuid.uuid4())

 # Intercept input and prepare optional response part

 if data is not None:

 data_bytes = data.getvalue()

 if len(data_bytes)>0:

 data_json = json.loads(data_bytes)

 res_dict["generator_client"] = data_json.get("client_name")

 except (Exception, ValueError) as ex:

 res_dict["message"] = str(ex)

 headers_dict={"Content-Type": "application/json"}

 res_str = json.dumps(res_dict)

 rsp = response.Response(ctx, response_data=res_str, headers=headers_dict)

 return rsp

Contrary to the blankfn function, uuidfn does parse the input provided in the form

of the data object of the io.ByteIO type. In addition to generating the UUID using the

uuid.uuid4() method, we are processing the input. If there is no input, we return just

the newly generated UUID string in JSON format as the generator_uuid object. If there

is input, we expect it to be in JSON format and parse it to extract the client_name object

to return it as the generator_client object in the JSON response. Providing an invalid

input will throw an error, which we eventually capture, and return an error message in

the response.

Chapter 9 Cloud-Native arChiteCture

510

Please create a new application called uuidapp.

[ubuntu@dev-vm]$ fn create app uuidapp

Successfully created app: uuidapp

At this stage, we should see two applications.

[ubuntu@dev-vm]$ fn list apps

NAME ID

blankapp 01DMQZJPDDNG8G00GZJ0000006

uuidapp 01DMR30A3TNG8G00GZJ000000P

To build the function-specific container image, we need to enter the function

directory and invoke the fn deploy command.

[ubuntu@dev-vm]$ cd ~/uuidfn

[ubuntu@dev-vm]$ fn --verbose deploy --app uuidapp --local

Deploying uuidfn to app: uuidapp

Bumped to version 0.0.2

Building image localdev/uuidfn:0.0.2

FN_REGISTRY: localdev

Current Context: default

...

Successfully built 569fa6a25ec1

Successfully tagged localdev/uuidfn:0.0.2

Updating function uuidfn using image localdev/uuidfn:0.0.2...

Successfully created function: uuidfn with localdev/uuidfn:0.0.2

To test the function, use the fn invoke command with the proper application and

function names as arguments.

[ubuntu@dev-vm]$ fn invoke uuidapp uuidfn

{"generator_uuid": "f03abce5-3615-4994-9680-157b057198d3"}

The function returns JSON with a newly generated UUID.

Chapter 9 Cloud-Native arChiteCture

511

You can provide the input to the function like this:

[ubuntu@dev-vm]$ echo -n '{ "client_name": "some_app" }' | fn invoke

uuidapp uuidfn --content-type application/json

{"generator_uuid": "3298bb2e-9cd5-476b-83b6-f4343d7c8522", "generator_

client": "some_app"}

As you can see, this time, there are two JSON objects in the response. The generator_

client object in the response stores the client_name value that was passed as the input.

The function is implicitly defined to be launched on an HTTP trigger. This means

that there must be an HTTP endpoint associated with the function. As a matter of fact,

an HTTP endpoint is something that we need to make the majority of our serverless

functions useful in production. You can see the function-specific endpoint using the fn

inspect function command.

[ubuntu@dev-vm]$ fn inspect function uuidapp uuidfn

{

 "annotations": {

 "fnproject.io/fn/invokeEndpoint": "http://localhost:8080/

invoke/01DMR7VTNHNG8G00GZJ0000009"

 },

 "app_id": "01DMR7TZRFNG8G00GZJ0000008",

 "created_at": "2019-09-14T15:57:01.489Z",

 "id": "01DMR7VTNHNG8G00GZJ0000009",

 "idle_timeout": 30,

 "image": "localdev/uuidfn:0.0.2",

 "memory": 256,

 "name": "uuidfn",

 "timeout": 30,

 "updated_at": "2019-09-14T15:57:01.489Z"

}

Chapter 9 Cloud-Native arChiteCture

512

In addition add the endpoint, the command reveals other information such as

the maximum function execution time, the idle timeout, and the container image the

function uses. The proper combination of the fn inspect function command and the

jq command will let you extract the endpoint and save it in the shell variable.

[ubuntu@dev-vm]$ FN_INVOKE_ENDPOINT=`fn inspect function uuidapp uuidfn |

jq -r '.annotations."fnproject.io/fn/invokeEndpoint"'`

Next, we can use the well-known curl tool to send an HTTP request to the endpoint.

[ubuntu@dev-vm]$ curl -X "POST" -H "Content-Type: application/json"

$FN_INVOKE_ENDPOINT

{"generator_uuid": "84eb8921-663f-4469-ad3b-fa34813da319"}

This section gave you a brief introduction to Fn Project and locally executed

serverless functions in practice. There are many other aspects I have not covered such

as packaging a number of functions in a single application, unit testing, and pushing

the function image to other registries. More importantly, serverless does give a no-

infrastructure impression for serverless function developers only. If you want to operate

a serverless platform, especially in production, there are various crucial tasks to plan

for and carry out. These tasks refer to security, load balancing, and worker node pool

management. Fn Project documents these instructions on its web page. All these things

are beyond the scope of this book.

Instead of operating a serverless platform on your own, you can rely on a managed

cloud-based serverless platform. In the next section, we will be working with Oracle

Functions, which is a managed serverless platform built with Fn Project on Oracle Cloud

Infrastructure.

Chapter 9 Cloud-Native arChiteCture

513

 Oracle Functions
Fn Project serves as a foundation for Oracle Functions, a function-as-a-service platform

available on Oracle Cloud. In the previous section, you worked with a local Fn server.

Now, you can take the same function code and deploy it to Oracle Functions. By doing

that, you will let your function run in an Oracle Cloud region of your choice. There is no

need to configure any compute instances or container orchestration clusters like we did

in the previous chapters to run applications. The underlying compute resources are fully

managed by Oracle Functions in the background. Function instances are dynamically

created in response to the function triggers. As you would probably expect, the most

basic trigger type is an HTTP request. Every Fn Project function that gets deployed to

Oracle Functions will be given a dedicated HTTP-based function endpoint. Requests

sent to that endpoint must be properly signed to pass through the authentication and

authorization done with OCI Identity and Access Management. When they succeed,

Oracle Functions reads function metadata and, based on that information, creates a

function-specific container to process the request. Other types of triggers are various

events that take place within Oracle Cloud. For instance, a newly created object in a

particular object storage bucket may generate an event that is propagated by the Oracle

Events service to a selected function in the Oracle Functions service. You will learn about

that in the second part of this chapter. Both triggers, HTTP-based and event-based, and

the general way Oracle Functions work are illustrated in Figure 9-9.

Figure 9-9. Oracle Functions

Chapter 9 Cloud-Native arChiteCture

514

It is recommended that function-specific container images are stored in Oracle

Container Image Registry (OCIR) in the same region as the Oracle Functions endpoint you

want your serverless function to run on. You already worked with OCIR in the previous

chapter. At that time, Oracle Kubernetes Engine was pulling images from OCIR to create

containers in Kubernetes pods. This time, the images will be dynamically pulled by Oracle

Functions to create short-living function containers that handle function calls as they arrive.

 OCI Networking and Policies

Before you start using Oracle Functions, there are two additional infrastructure-related,

initial-setup selections to be made.

• Choose virtual cloud network subnets for serverless functions.

• Create the required IAM policy statements for the FaaS service.

Why do we even talk about virtual networks if there should be no infrastructure

management needed for Oracle Functions? When you define an Fn application, which

groups serverless functions, and intend this application to run on Oracle Functions, you

have to denote the VCN subnet. The VCN subnet must contain at least 32 available IP

addresses in its IP range and should rely on stateless security rules. It is absolutely fine

to use various VCNs for running serverless functions. You will learn how to specify the

VCN for an Oracle Functions application in one of the sections ahead. Normally, you

would create new subnets on your own. For the purpose of the exercises in this section,

the subnet was already created by Terraform, together with the compute machine

for function development. You will find the corresponding infrastructure code in the

functions module. The compute instance is attached to the dev-net public subnet. The

functions-subnet private subnet is intended for Oracle Functions. Figure 9-10 presents

both subnets in the OCI Console.

Figure 9-10. VCN subnet for Oracle Functions

Chapter 9 Cloud-Native arChiteCture

515

Oracle Functions is fully integrated with IAM. This fact impacts both sides of the

service. Not only must Oracle Functions be granted the required access, but also

function developers and function consumers must belong to the IAM groups that

are referenced by the relevant IAM policy statements. Let’s discuss this in a bit more

structured way. First, the FaaS service, which represents Oracle Functions in IAM, must

be allowed to do the following:

• To use virtual networks in the tenancy or selected compartments

• To read container image registry repositories in OCIR

These privileges are granted with the policy statements shown in Listing 9-5.

Listing 9-5. tenancy.functions.policy.json

[

 "allow service FaaS to use virtual-network-family in compartment

Sandbox",

 "allow service FaaS to read repos in tenancy"

]

Second, to deploy and monitor their serverless functions, function owners have to

belong to IAM groups that are allowed.

• To interact with the manage-level OCI APIs for the functions family

• To read the metrics

• To use the virtual networks

• To manage selected repositories in OCIR

The statements can be narrowed to selected compartments. In our case, we will

let the members of the sandbox-users group deploy and monitor the functions in the

Sandbox compartment only. Three of the required privileges are granted with the policy

statements shown in Listing 9-6.

Chapter 9 Cloud-Native arChiteCture

516

Listing 9-6. sandbox-users.functions.policy.json

[

 "allow group sandbox-users to manage functions-family in compartment

Sandbox",

 "allow group sandbox-users to read metrics in compartment Sandbox",

 "allow group sandbox-users to use virtual-network-family in compartment

Sandbox"

]

If you completed exercises from Chapter 8, the fourth remaining policy statement is

already defined. It should be defined in the root compartment (on the tenancy level) in

the policy called tenancy-ocir-policy and looks like this:

allow group sandbox-users to manage repos in tenancy where target.repo.name =

 /sandbox∗/

Let’s create the two new policies shown in Listings 9-5 and 9-6. To do so, go back to

our local machine with the OCI CLI and execute the following commands:

$ cd ~/git/oci-book/chapter09/3-functions/policies

$ TENANCY_OCID=`cat ~/.oci/config | grep tenancy | sed 's/tenancy=//'`

$ echo $TENANCY_OCID

ocid1.tenancy.oc1..aa...3yymfa

$ oci iam policy create -c $TENANCY_OCID --name functions-policy

--description "FaaS Policy" --statements "file://tenancy.functions.policy.

json"

{

 "data": {

 ...

 "lifecycle-state": "ACTIVE",

 "name": "functions-policy",

 ...

}

$ oci iam policy create --name sandbox-users-functions-policy --description

"Functions-related policy for regular Sandbox users" --statements "file://

sandbox-users.functions.policy.json" --profile SANDBOX-ADMIN

Chapter 9 Cloud-Native arChiteCture

517

{

 "data": {

 ...

 "lifecycle-state": "ACTIVE",

 "name": "sandbox-users-functions-policy",

 ...

}

We have prepared our tenancy for Oracle Functions. Now, let’s move to the fn client

and create a new context.

 Client Setup

From a function developer’s point of view, in terms of fn client configuration, we need to

add a new Fn client context first. The Fn client context

• Uses the oracle provider

• Points to an Oracle Functions API endpoint

• Pushes function-specific container images to OCIR

Second, the Fn client context that uses the oracle provider must reference a profile

stored in the existing OCI CLI configuration file. This is needed because Oracle Functions

functions are integrated with IAM in Oracle Cloud. Function developers must have an

identity of an existing Oracle Cloud user, for example, the sandbox-user user, to perform

operations such as creating new applications or functions in Oracle Functions. As an

analogy, you can recall the use of the OCI CLI. All CLI commands, or the underlying API

calls to be more precise, are executed on behalf of an IAM user defined under a named

profile in the OCI CLI configuration file.

To ease the development process, you can work with the local Fn server and Oracle

Functions interchangeably. In this way, you will be able to develop and unit test your newly

created functions locally and only then deploy them to Oracle Functions. To work like that,

it is enough to switch between the contexts illustrated in Figure 9-11.

Figure 9-11. Fn Project contexts

Chapter 9 Cloud-Native arChiteCture

518

You know the theory now. It’s time to make it real. Connect to the compute instance,

and create a new context using the fn create context command with the --provider

option set to oracle like this:

[ubuntu@dev-vm]$ fn create context sandbox-user-fra-oci --provider oracle

Successfully created context: sandbox-user-fra-oci

In the fn client configuration directory, there should be a new YAML file created.

/home/ubuntu/.fn/contexts/

├── default.yaml
└── sandbox-user-fra-oci.yaml

For the time being, this new context file is practically empty and definitely unusable. You

have to add the following details to let the fn client properly work with Oracle Functions:

• Regional Oracle Functions API endpoint

• Regional Oracle Container Image Registry (OCIR) repository

endpoint

• Fn Project oracle-provider-specific information:

• Compartment OCID

• Name of the OCI CLI configuration profile

The Oracle Functions API endpoint should be set in the following format:

https://functions.<region-name>.oraclecloud.com

The OCIR repository endpoint uses a format like this:

<region-code>.ocir.io/<tenancy-namespace>/<repository-name>

For example, if you are working in the Frankfurt region, you will use eu-frankfurt-1

as the region name and simply fra as the region code. You can find the list of other

region names and their codes in the OCI documentation. To identify your tenancy

namespace, you can use the following command:

$ oci os ns get --query 'data' --raw-output

jakobczyk

Chapter 9 Cloud-Native arChiteCture

519

Now, reconnect to the compute instance, and add the aforementioned information

by editing the context file.

$ ssh -i ~/.ssh/oci_id_rsa ubuntu@$DEV_MACHINE_IP

[ubuntu@dev-vm]$ vi ~/.fn/contexts/sandbox-user-fra-oci.yaml

You can start with the chapter09/3-functions/configuration/sandbox-user-fra-

oci.yaml template file and edit it in a similar way, as shown in Listing 9-7.

Listing 9-7. ~/.fn/contexts/sandbox-user-fra-oci.yaml

api-url: https://functions.eu-frankfurt-1.oraclecloud.com

registry: fra.ocir.io/jakobczyk/sandbox-fn

provider: oracle

oracle.compartment-id: ocid1.compartment.oc1..aa...gzwhsa

oracle.profile: SANDBOX-USER

Do not forget to use the OCID of the Sandbox compartment as the value to the oracle.

compartment-id field. The context file mentions an OCI CLI configuration profile name

as a value of the oracle.profile property. Until now, you have used the OCI CLI on your

local development machine. This chapter assumes you are using a cloud-based compute

instance for function development. The new fn client context that is supposed to let the

fn client work with Oracle Functions references a particular OCI CLI configuration profile.

Because of that, we need to create the config file on the compute instance as well. There is

no need to install the CLI, however. It is all about the configuration in this case. Let’s create

the config in the default path. In this way, the fn client will be able to pick it up.

[ubuntu@dev-vm]$ mkdir ~/.oci

[ubuntu@dev-vm]$ vi ~/.oci/config

Copy only the SANDBOX-USER profile from the OCI CLI config file you are using on

your original development machine. Do not forget to add the tenancy OCID and the

region name, as shown in Listing 9-8.

Chapter 9 Cloud-Native arChiteCture

520

Listing 9-8. ~/.oci/config (on Compute Instance for Function Development)

[SANDBOX-USER]

tenancy=ocid1.tenancy.oc1..aa...3yymfa

region=eu-frankfurt-1

user=ocid1.user.oc1..aa...dzqpxa

fingerprint=ad:82:99:bf:93:27:63:7b:35:75:f5:27:d4:95:78:86

key_file=~/.apikeys/api.sandbox-user.pem

pass_phrase=secret

The IAM identity for the fn client is derived from the information stored in the

configuration file. More precisely, the fn client reads only the information under the

referenced profile. To interact with Oracle Functions, the oracle provider used by the fn

client will eventually translate the fn client commands to OCI API requests, as illustrated

in Figure 9-12. This information is required to properly sign these requests; otherwise,

the OCI API would reject them.

Figure 9-12. Fn client configuration for Oracle Functions

Chapter 9 Cloud-Native arChiteCture

521

The last missing element in the client configuration is the private key used to sign

API requests. To simplify the exercise, we are going to reuse the same API signing key

that we use for standard OCI CLI calls. Back on your original development machine

with the OCI CLI, you can use the scp tool to upload the API signing key to the compute

instance for function development like this:

$ cd ~/git/oci-book/chapter09/1-infrastructure

$ DEV_MACHINE_IP=`terraform output dev_machine_public_ip`

$ scp -i ~/.ssh/oci_id_rsa ~/.apikeys/api.sandbox-user.pem ubuntu@$DEV_

MACHINE_IP:/home/ubuntu

api.sandbox-user.pem 100% 1766 57.2KB/s 00:00

Next, connect to the compute instance and move the API signing key to the directory

that is declared in the configuration file.

[ubuntu@dev-vm]$ mkdir ~/.apikeys

[ubuntu@dev-vm]$ mv ~/api.sandbox-user.pem ~/.apikeys/api.sandbox-user.pem

[ubuntu@dev-vm]$ chmod go-rwx ~/.apikeys/api.sandbox-user.pem

All in all, the three files required by the fn client to work with Oracle Functions are

on our dev-vm compute instance.

/home/ubuntu

├── .apikeys
│ └── api.sandbox-user.pem
...

├── .fn
│ ├── config.yaml
│ ├── contexts
│ │ ├── default.yaml
│ │ └── sandbox-user-fra-oci.yaml
...

├── .oci
│ └── config

Now, set the new context to be the current one by using the fn use context

command, and, in the subsequent step, issue the fn list apps command to test the

connectivity to Oracle Functions.

Chapter 9 Cloud-Native arChiteCture

522

[ubuntu@dev-vm]$ fn use context sandbox-user-fra-oci

Now using context: sandbox-user-fra-oci

[ubuntu@dev-vm]$ fn list apps

No apps found

This time, there are no Fn applications shown, but this is exactly what we were

expecting. At the moment, there are no functions deployed to the cloud yet. The old

applications, namely, blankapp and uuidapp, did not disappear but are still registered on

our local Fn server. They are not listed in the fn list app output at the moment simply

because, this time, we are interacting with Oracle Functions and not with the local Fn

server. If you change the context back to the local one, you should see these two apps

again. Anyway, let’s continue using the new context that makes our fn client commands

work with Oracle Functions.

 Deploying the UUID Function

We are ready to deploy the same uuidfn function code, which we tested locally on

our machine, to Oracle Functions. First, we will register a new application for Oracle

Functions. As part of this activity, you must denote the VCN subnet, which will be used

by Oracle Functions to dynamically plug transient function-specific containers for that

particular function into OCI networking. As you recall, the infrastructure code described

at the beginning of this chapter has created a subnet that can be referenced by the

application we are about to register.

Tip it is absolutely fine to use different vCN subnets for your oracle Functions
applications. Just make sure they fulfill the recommendations such as the number
of available private ip addresses or the use of stateless security rules.

Back on your local developer machine, use the terraform output command to get

the OCID of this subnet.

$ cd ~/git/oci-book/chapter09/1-infrastructure

$ terraform output functions_subnet_ocid

ocid1.subnet.oc1.eu-frankfurt-1.aa...sp2ufa

Chapter 9 Cloud-Native arChiteCture

523

Next, connect to the dev-vm compute instance, store the subnet OCID in a shell

variable, and issue the fn create app command with the oracle.com/oci/subnetIds

annotation set to the value of the variable. The commands you execute will look similar

to these:

[ubuntu@dev-vm]$ FN_SUBNET_ID=ocid1.subnet.oc1.eu-frankfurt-1.aa...sp2ufa

[ubuntu@dev-vm]$ fn create app uuidcloudapp --annotation oracle.com/oci/

subnetIds="[\"$FN_SUBNET_ID\"]"

Successfully created app: uuidcloudapp

At this stage, if you want, you can verify in the OCI Console that the application has

been indeed created. To do so, do the following:

 1. Go to Menu ➤ Developer Services ➤ Functions.

 2. Make sure that the Sandbox compartment is selected.

You should be able to see an entry in the list of applications, as shown in Figure 9-13.

Figure 9-13. Viewing functions in the OCI Console

An application alone does not provide us with any kind of services. It is just a logical

grouping of functions. It is recommended to store function-specific container images in

the Oracle Container Image Registry (OCIR) in the same region in which we want the

function instances to serve trigger-based function calls. Before we deploy a function, we

need to log in to the OCIR. I have already covered this task in the previous chapter, so

let me assume you are already familiar with this task. Just remember to use the tenancy

namespace and not the OCID. Similarly, use the region code such as fra instead of a

region name. Just make sure you find the authentication token for the sandbox-user you

Chapter 9 Cloud-Native arChiteCture

524

used in the previous chapter or create a new one. You will need it as a password to sign

in to the OCIR. As soon as you are ready, please adjust the values of the OCI_TENANCY_

NAMESPACE variable and the OCIR_REGION variable in the following code snippet and

execute the docker login command:

[ubuntu@dev-vm]$ OCI_TENANCY_NAMESPACE=jakobczyk

[ubuntu@dev-vm]$ OCIR_REGION=fra

[ubuntu@dev-vm]$ OCI_USER=sandbox-user

[ubuntu@dev-vm]$ docker login -u $OCI_TENANCY_NAMESPACE/$OCI_USER $OCIR_

REGION.ocir.io

Password: <PUT-HERE-AUTH-TOKEN>

Login Succeeded

To deploy the uuidfn function, you can use the fn deploy command. You will

be required to reference the application that you created in Oracle Functions only a

few moments ago. Furthermore, we have not changed anything in the function code;

therefore, the --no-bump parameter will disable the default behavior of incrementing the

image version. All in all, these are the commands to execute:

[ubuntu@dev-vm]$ cd ~/uuidfn

[ubuntu@dev-vm]$ fn -v deploy --app uuidcloudapp --no-bump

Deploying uuidfn to app: uuidcloudapp

Building image fra.ocir.io/jakobczyk/sandbox-fn/uuidfn:0.0.2

FN_REGISTRY: fra.ocir.io/jakobczyk/sandbox-fn

Current Context: sandbox-user-fra-oci

...

Successfully built 258fbf5d0629

Successfully tagged fra.ocir.io/jakobczyk/sandbox-fn/uuidfn:0.0.2

Parts: [fra.ocir.io jakobczyk sandbox-fn uuidfn:0.0.2]

Pushing fra.ocir.io/jakobczyk/sandbox-fn/uuidfn:0.0.2 to docker registry...

The push refers to repository [fra.ocir.io/jakobczyk/sandbox-fn/uuidfn]

...

Updating function uuidfn using image fra.ocir.io/jakobczyk/sandbox-fn/

uuidfn:0.0.2...

Successfully created function: uuidfn with fra.ocir.io/jakobczyk/sandbox-

fn/uuidfn:0.0.2

Chapter 9 Cloud-Native arChiteCture

525

As you can see in the build output, the image was properly tagged and pushed to

the OCIR in the region of our choice. Finally, the function creation was reported to be

successful.

Back in the OCI Console, if you click the uuidcloudapp application name, you will be

taken to the more detailed view and should see the newly created function in the list, as

presented in Figure 9-14.

Figure 9-14. Viewing functions in the OCI Console

Figure 9-15. Viewing the function-specific container image in the OCI Console

Similarly, the function-specific container image will be listed in the OCIR view in the

OCI Console, as shown in Figure 9-15. If you completed the exercises from the

previous chapter, you may also see another image in the sandbox/uuid repository.

Function testing can be done in the same way as before. We will use the fn invoke

command that takes the application name and the function name as parameters. For a

simple smoke test, let’s issue a single-function call.

 [ubuntu@dev-vm]$ fn invoke uuidcloudapp uuidfn

{"generator_uuid": "921d63a9-f20c-44c0-97e6-5ff875fb1b39"}

Chapter 9 Cloud-Native arChiteCture

526

As you recall, the uuidfn function parses the input in a search for a top-level client_

name JSON object that is used to set the value for the generator_client object in the

JSON response. To test the input data processing, issue the following command:

[ubuntu@dev-vm]$ echo -n '{ "client_name": "some_app" }' | fn invoke

uuidcloudapp uuidfn --content-type application/json

{"generator_uuid": "7685e3b8-5db7-49e1-8f1b-1561e16e9103", "generator_

client": "some_app"}

Let’s trigger the function two more times.

[ubuntu@dev-vm]$ fn invoke uuidcloudapp uuidfn

{"generator_uuid": "9b4ad9bb-7d20-47d9-a53c-b3eb61854e4d"}

[ubuntu@dev-vm]$ fn invoke uuidcloudapp uuidfn

{"generator_uuid": "b60fa2f0-3778-4a6a-9932-90d852a78ab1"}

Now, in the OCI Console, you can go to the Metrics tab in the Resources menu and

inspect various metrics for this particular function. For example, one of the simplest but

still very interesting metrics is the number of function invocations. It looks like what is

shown in Figure 9-16.

Figure 9-16. Viewing function invocations in the OCI Console

Chapter 9 Cloud-Native arChiteCture

527

A moment ago, to conduct function tests, we employed the fn invoke command.

Normally, function consumers such as regular client applications or other systems will

use the function’s HTTP invoke endpoint instead, either directly or, in the case of more

sophisticated solutions, hidden behind an enterprise-grade API management platform.

You can discover the endpoint in the OCI Console as well as by using the fn inspect

function command like this:

[ubuntu@dev-vm]$ fn inspect function uuidcloudapp uuidfn | jq -r

'.annotations."fnproject.io/fn/invokeEndpoint"'

https://wup2t5yjlba.eu-frankfurt-1.functions.oci.oraclecloud.com/20181201/

functions/ocid1.fnfunc.oc1.eu-frankfurt-1.aa...gsoxsq/actions/invoke

Function calls in the form of HTTP requests are sent to the invoke endpoints and

must be signed using the correct Oracle Cloud Infrastructure signature. In other words,

Oracle Functions accepts external requests only when they are sent by known tenancy

users no matter if they are human or system users. If you send an unsigned request to a

function invoke endpoint, you will receive the following response:

{"code":"NotAuthenticated","message":"Not authenticated"}

To send signed requests, you will need to map your function consumers to existing

Oracle Cloud users, which would require some careful planning. Furthermore, to

expose more user-friendly REST APIs to the function consumers, you would probably

deploy some kind of a gateway or even employ an aforementioned fully fledged API

management platform. Let me skip this topic here because it relates to aspects that are

beyond the scope of this book. In the meantime, let’s move on to discuss the second type

of function triggers, namely, events.

Chapter 9 Cloud-Native arChiteCture

528

 Events
What is an event? Usually, we use this word to refer to an occurrence of a particular

situation of some kind. Let me take a business process as an example. An incoming

e-mail to a particular inbound e-mail address could be treated as an event and effectively

trigger a new business process case in the system. Similarly, a new file uploaded to the

object storage bucket could also be treated as an event and trigger a serverless function

instance to process the newly uploaded data. In both cases, events need to carry some

additional, but preferably limited and lightweight, context information. In the latter

example, an event would carry at least the name of the new object as well as the name of

the bucket. In this way, the corresponding serverless function would be able to recognize

the object whose creation caused the event. Events are crucial in contemporary

software architectures and provide the foundation for different application integration

patterns such as fire-and-forget, publish-subscribe, or store-and-forward. Event-driven

application architectures, where components communicate by exchanging events,

benefit from loose coupling, the key enabler for independent component development

and lifecycle management that eventually boosts productivity.

As an exercise, we are going to deploy and test a serverless function that processes

newly created objects that appear in a particular object storage bucket. Function

instances will be triggered by object creation events in that particular bucket. When a

new object is uploaded to the reports bucket, an instance of the reportingfn serverless

function will be created and provided with the event context information that carries the

object name. Next, the function will verify whether the name of the object uses the .raw.

csv suffix. If yes, the function will read the contents of the object, perform a simple data

aggregation in memory, and create a new object to store the results of the operation. The

new object will be suffixed with the .processed.csv suffix. Figure 9-17 illustrates the

data processing logic stated earlier.

Chapter 9 Cloud-Native arChiteCture

529

Figure 9-17. Event-based function calls

 Functions and Object Storage
Functions running on the Oracle Functions platform access object storage in a similar

way as traditional applications running on compute instances do. Just like with compute

instances, the OCI API calls originating from functions are done on behalf of the instance

principals you got familiar with in Chapter 5. As you recall, instance principals can be

included in dynamic groups. To include all dynamically created function instances of

a particular function in a dynamic group, you can design the dynamic group matching

rule simply to include all functions with a specific tag key. Finally, you create IAM policy

statements to allow dynamic group members to access particular APIs and interact with

OCI resources such as object storage buckets and objects. Figure 9-18 illustrates these

access-related aspects.

Chapter 9 Cloud-Native arChiteCture

530

Now, you should understand the goal for this section as well as the mechanisms we

are about to employ to allow function instances to interact with object storage APIs and

effectively process objects.

 Preparing Infrastructure

As a first step, we have to prepare a new object storage bucket. Disconnect from the

compute instance for function development, and execute the oci os bucket create

command on your development machine with the OCI CLI.

$ oci os bucket create --name reports --profile SANDBOX-ADMIN

{

 "data": {

 ...

 "name": "reports",

 "public-access-type": "NoPublicAccess",

 "storage-tier": "Standard",

 ...

 }

}

Figure 9-18. Dynamic groups and functions

Chapter 9 Cloud-Native arChiteCture

531

Next, we are going to let the sandbox-user manage all the objects in the newly

created reports bucket. To do so, use oci iam policy create to create the new policy,

as shown in the following:

$ cd ~/git/oci-book/chapter09/4-events/policies

$ oci iam policy create --name sandbox-users-storage-reports-policy

--statements file://sandbox-users.policies.storage-reports.json

--description "Storage-related (reports) policy for regular Sandbox users"

--profile SANDBOX-ADMIN

{

 "data": {

 ...

 "name": "sandbox-users-storage-reports-policy",

 "description": "Storage-related (reports) policy for regular Sandbox

users",

 "lifecycle-state": "ACTIVE",

 ...

 }

}

You should be already familiar with the read buckets and manage objects policy

verbs. You applied them for another bucket, back in Chapter 5. Listing 9-9 shows the

statements for the reports bucket.

Listing 9-9. sandbox-users.policies.storage-reports.json

[

"allow group sandbox-users to read buckets in compartment Sandbox where

target.bucket.name='reports'",

"allow group sandbox-users to manage objects in compartment Sandbox where

target.bucket.name='reports'"

]

Now, upload the first test file:

$ cd ~/git/oci-book/chapter09/4-events/reports

$ oci os object put -bn blueprints --file customer_attendance.20190922.raw.

csv --profile SANDBOX-USER

Uploading object [####################################] 100%

Chapter 9 Cloud-Native arChiteCture

532

As a part of the Chapter 5 exercise, we created the test-projects tag namespace.

Within this already existing tag namespace, let’s prepare a new tag key called reports.

We will use this key later to tag the object-processing function. Now, use oci iam tag-

namespace list with the following query to read the OCID of the tag namespace. Next,

use this OCID in the oci iam tag create command that creates the new tag key.

$ TAG_NAMESPACE_OCID=`oci iam tag-namespace list --query

"data[?name=='test-projects'] | [0].id" --raw-output`

$ echo $TAG_NAMESPACE_OCID

ocid1.tagnamespace.oc1..

aaaaaaaac7doek63tcdgt3xqtjfx5is3twcpdsszaqsmxlurkwx7pu6qu2eq

$ oci iam tag create --tag-namespace-id $TAG_NAMESPACE_OCID --name reports

--description "Reports project" --profile SANDBOX-ADMIN

{

 "data": {

 ...

 "tag-namespace-name": "test-projects",

 "name": "reports",

 "description": "Reports project",

 "is-cost-tracking": false,

 "lifecycle-state": "ACTIVE",

 ...

 }

}

We are going to use the following dynamic group matching rule that includes all

functions tagged with the test-projects.reports tag key:

ALL {resource.type = 'fnfunc', tag.test-projects.reports.value}

Now, use oci iam dynamic-group create to create the dynamic group.

$ echo $TENANCY_OCID

ocid1.tenancy.oc1..aa...3yymfa

$ MATCHING_RULE="ALL { resource.type = 'fnfunc', tag.test-projects.reports.

value = 'r1' }"

$ oci iam dynamic-group create --name reporting-functions --description

"Functions related to the reporting project" --matching-rule "$MATCHING_

RULE" -c $TENANCY_OCID

Chapter 9 Cloud-Native arChiteCture

533

{

 "data": {

 ...

 "name": "reporting-functions",

 "description": "Functions related to the reporting project",

 "matching-rule": "tag.test-projects.reports.value",

 "lifecycle-state": "ACTIVE",

 ...

 }

}

The last step is to add a new IAM policy statement to permit the members of

that dynamic group to manage objects stored in the reports bucket in the Sandbox

compartment. Listing 9-10 shows this IAM policy statement.

Listing 9-10. functions.policies.storage-reports.json

[

"allow dynamic-group reporting-functions to manage objects in compartment

Sandbox where target.bucket.name='reports'"

]

These commands will get the new IAM policy in place:

$ cd ~/git/oci-book/chapter09/4-events/policies

$ oci iam policy create --name functions-storage-reports-policy --statements

file://functions.policies.storage-reports.json --description "Storage-

related (reports) policy for tagged functions" --profile SANDBOX- ADMIN

{

 "data": {

 ...

 "name": "functions-storage-reports-policy",

 "description": "Storage-related (reports) policy for tagged functions",

 "lifecycle-state": "ACTIVE",

 ...

 }

}

Chapter 9 Cloud-Native arChiteCture

534

In a few steps, we prepared the object storage access control configuration for the

function instances attached to the test-projects.reports defined tag.

 Deploying Function

The new function will be called reportingfn and use a Python-based implementation.

Now, connect to the compute instance for function development, and use the fn init

command to create the function stub.

[ubuntu@dev-vm]$ cd ~

[ubuntu@dev-vm]$ fn init --runtime python reportingfn

Creating function at: ./reportingfn

Function boilerplate generated.

func.yaml created.

Like before, cloud-init has already downloaded the function code and placed it in

the functions directory. Copy the code to the function stub.

[ubuntu@dev-vm]$ cp ~/functions/reportingfn.py ~/reportingfn/func.py

The function uses the OCI SDK for Python to interact with OCI object storage. This

implies a dependency to the oci module and forces us to amend the requirements.txt

file. Only in this way will the function-specific image ship with the oci module. You can

use a simple echo command to append the oci name to the requirements.txt file.

[ubuntu@dev-vm]$ echo -ne "\noci" >> ~/reportingfn/requirements.txt

[ubuntu@dev-vm]$ cat ~/reportingfn/requirements.txt

fdk

oci

The reportingfn.py code is slightly larger than two functions we worked before.

Listing 9-11 shows the most important parts of the handler function.

Listing 9-11. reportingfn.py Function

...

def handler(ctx, data: io.BytesIO=None):

...

 bucket_name = "reports"

 object_name = extract_object_name(data)

Chapter 9 Cloud-Native arChiteCture

535

...

 signer = oci.auth.signers.get_resource_principals_signer()

 client = oci.object_storage.ObjectStorageClient(

 config={},

 signer=signer)

 storage_namespace = client.get_namespace().data

 object_content_str = load_object_content(

 client, storage_namespace,

 bucket_name, object_name)

 city_attendance_str = process_city_attendance_data(

 object_content_str)

 processed_object_name = object_name.replace(

 '.raw.csv','.processed.csv')

 put_response = put_city_attendance_object(

 client, storage_namespace, bucket_name,

 processed_object_name, city_attendance_str)

...

The function is implemented to interact solely with the reports bucket. It reads

the newly created object name from the input data. This logic is provided in the

extract_object_name function we will cover in a few moments. Next, the OCI SDK

functions are called to obtain an ObjectStorageClient object and get the object storage

namespace to work with. In subsequent steps, the function loads the contents (load_

object_content function) of the newly created object, processes that data (process_

city_attendance function), and finally persists the results of the processing in another

new object (put_city_attendance_data function) with the same name as the original

object but a different suffix (.processed.csv). You will find these functions in the same

reportingfn.py file. As long as you know the basics of Python, the code should be

relatively easy to understand.

Based on the current Fn client context, deploying a function to Oracle Functions will

push the image to OCIR. Although we already executed the docker login command,

you may need to repeat this operation. If this is the case, these are the commands to

execute:

Chapter 9 Cloud-Native arChiteCture

536

[ubuntu@dev-vm]$ OCI_TENANCY_NAMESPACE=jakobczyk

[ubuntu@dev-vm]$ OCIR_REGION=fra

[ubuntu@dev-vm]$ OCI_USER=sandbox-user

[ubuntu@dev-vm]$ docker login -u $OCI_TENANCY_NAMESPACE/$OCI_USER $OCIR_

REGION.ocir.io

Password: <PUT-HERE-AUTH-TOKEN>

Login Succeeded

Now, make sure FN_SUBNET_ID is properly defined and use fn create app to create

the application.

[ubuntu@dev-vm]$ FN_SUBNET_ID=ocid1.subnet.oc1.eu-frankfurt-1.aa...sp2ufa

[ubuntu@dev-vm]$ fn create app reportingapp --annotation oracle.com/oci/

subnetIds="[\"$FN_SUBNET_ID\"]"

Successfully created app: reportingapp

We are ready to deploy the function.

[ubuntu@dev-vm]$ cd reportingfn/

[ubuntu@dev-vm]$ fn -v deploy --app reportingapp

...

Updating function reportingfn using image fra.ocir.io/jakobczyk/sandbox-fn/

reportingfn:0.0.2...

Successfully created function: reportingfn with fra.ocir.io/jakobczyk/

sandbox-fn/reportingfn:0.0.2

Figure 9-19 shows the newly deployed function in the OCI Console. Similarly,

Figure 9- 20 presents the function-specific container image in OCIR.

Figure 9-19. Viewing the function in the OCI Console

Chapter 9 Cloud-Native arChiteCture

537

Figure 9-20. Viewing a function-specific container image in the OCI Console

We mustn’t forget about the tag we need to attach to the function. This can be done

with the OCI CLI. First, you use the oci fn application list command with a tailored

JMESPath query to obtain the OCID of the Oracle Functions application. Next, you use

the oci fn function list command to fetch the OCID of the function. Finally, you

can use the oci fn function update command to attach the test-projects.reports-

defined tag to the function.

$ FN_APP_OCID=`oci fn application list --query "data[?\"display-name\" ==

'reportingapp'] | [0].id" --raw-output`

$ echo $FN_APP_OCID

ocid1.fnapp.oc1.eu-frankfurt-1.aa...spf2rq

$ FN_FUN_OCID=`oci fn function list --application-id $FN_APP_OCID --query

"data[?\"display-name\" == 'reportingfn'] | [0].id" --raw- output`

$ echo $FN_FUN_OCID

ocid1.fnfunc.oc1.eu-frankfurt-1.aa...j3lfqa

$ oci fn function update --function-id $FN_FUN_OCID --defined-tags '{

"test-projects": {"reports": "r1"} }'

WARNING: Updates to config and freeform-tags and defined-tags will replace

any existing values. Are you sure you want to continue? [y/N]: y

{

 "data": {

 ...

 "defined-tags": {

 "test-projects": {

 "reports": "r1"

 }

Chapter 9 Cloud-Native arChiteCture

538

 },

 "display-name": "reportingfn",

 "freeform-tags": {},

 ...

 "lifecycle-state": "ACTIVE",

 ...

 }

}

If you want, follow these steps in the OCI Console to visually confirm that the tag has

been properly attached to the function:

 1. Go to Menu ➤ Developer Services ➤ Functions.

 2. Make sure that the Sandbox compartment is selected.

 3. Click the name of the reportingapp application.

 4. Click the name of the reportingfn function.

 5. Click the Tag tab.

You should see the new defined tag that exists in the test-projects tag namespaces

and uses the reports key, as presented in Figure 9-21.

The function has been deployed to Oracle Functions. Before we test it, let’s discuss

the way it is triggered.

Figure 9-21. Viewing a defined tag key attached to the function

Chapter 9 Cloud-Native arChiteCture

539

 Events As Function Triggers
The reportingfn function will be triggered by the creation of a new object in the

reports bucket. The event must carry some basic information about the context. A

function instance must be informed about the name of the object to process. Let’s

come up with a simple example for the event payload. You could imagine that the event

context information is stored in a JSON format that looks like the sample shown in

Listing 9-12.

Listing 9-12. event.mock.json

{

 "eventType": "createobject",

 "source": "ObjectStorage",

 "eventTime": "2019-09-23T10:49:00.195Z",

 "data": {

 "resourceName": "customer_attendance.20190922.raw.csv",

 }

}

The function code would then parse the incoming event payload and extract

the resourceName element that carries the name of the newly created object. The

reportingfn function uses the aforementioned extract_object_name function, which is

presented in Listing 9-13.

Listing 9-13. reportingfn.py: extract_object_name Function

...

def extract_object_name(data: io.BytesIO):

 data_bytes = data.getvalue()

 data_json = json.loads(data_bytes)

 object_name = data_json['data']['resourceName']

 return object_name

...

Chapter 9 Cloud-Native arChiteCture

540

Coming back to the test object we uploaded a few moments ago, let’s check its name

in the OCI Console. The object uses the customer_attendance.20190922.raw.csv

name, as shown in Figure 9-22.

In the home directory for the ubuntu user, on the compute instance for functions

development, you can find the ~/event.mock.json file. The file contains the event

payload, as shown in Listing 9-13. The file was downloaded during the initial boot by

cloud-init, in the same way as the files with function code for the three functions you

deployed. To test the function, we will provide the contents of the file as the input stream

to the function.

[ubuntu@dev-vm]$ cat ~/event.mock.json | fn invoke reportingapp reportingfn

--content-type application/json

{"object_name": "customer_attendance.20190922.raw.csv", "processed_object_

name": "customer_attendance.20190922.processed.csv",

"result": "success"}

Now, if you look at the list of objects in the reports bucket in the OCI Console, you

should soon see the new object, as shown in Figure 9-23. This new object was created by

a dynamically generated function instance running on the Oracle Functions platform.

Figure 9-22. Viewing the raw data object in the OCI Console

Chapter 9 Cloud-Native arChiteCture

541

Figure 9-23. Viewing the processed data object in the OCI Console

All right, so far so good, but this is still not what we originally intended. Our goal is

to get function instances triggered automatically, as soon as a new object appears in the

bucket. It is time to cover another open source project that belongs to the CNCF project

ecosystem.

 CloudEvents
The CloudEvents project is one of the relatively new initiatives that operates under

the umbrella of CNCF. The project’s main goal is to provide the community with a

unified specification that describes event data. Event-driven applications are not new,

and there have been plenty of various structures used for events by different software

components. When an event publisher emits events in a different format than the one

expected by event consumers, this usually leads to a sometimes costly and in other cases

just annoying need for an additional application integration effort. To alleviate that

kind of pain, it has become clear that something as simple and rather limited in scope

as event context information should be agreed on by the industry in the form of a joint

effort. CloudEvents delivers a specification that describes event data. Furthermore, it is

accompanied with reference implementations in various programming languages. You

can find all of that on GitHub, as shown in Figure 9-24.

Figure 9-24. CloudEvents project on GitHub

Chapter 9 Cloud-Native arChiteCture

542

The CloudEvents specification is lightweight in content and relatively quick to read. At

the time of writing, there are three stable versions of the specification. It is highly probable

that when you are reading this book, there are already newer versions available. Do not

worry about that. To briefly discuss the specification, we will focus on version 0.1. The

details will change in time, but the general rules remain. I have picked version 0.1 because

it is still the current standard for Oracle Events you will learn about in the next sections.

At the heart of the CloudEvents specification (version 0.1), there are three sections.

• Terminology

• Type system

• Context attributes

The most interesting part are the context attributes that effectively define the

event envelope or, in other words, basically the payload that carries the event context

information. These are mainly metadata such as the type, source, and time of the event as

well as event-specific data and their content-type. These attributes are listed in Table 9-1.

Listing 9-14 shows the selected elements of an event emitted by object storage in

Oracle Cloud. You can see that in this case we are looking at an event emitted during

the creation of a new object. This is based on the values of the eventType and source

fields. The compartment, bucket, and object name are shipped inside the data element.

The listing shows only the object name stored in the resourceName field. Many of other

domain-specific event data were omitted for the brevity of the listing.

Table 9-1. CloudEvents Context Attributes

CloudEvents Version 0.1 0.3 / 1.0-rc1

Specification version in use cloudEventsVersion specversion

type of the event eventType type

version of the event type eventTypeVersion -

event emitter source source

unique event identifier eventID id

event occurrence timestamp eventTime time

type of the content in the data field contentType datacontenttype

domain-specific data for an event data data

Chapter 9 Cloud-Native arChiteCture

543

Listing 9-14. CloudEvent (Version 1)

{

 "eventType": "com.oraclecloud.objectstorage.createobject",

 "cloudEventsVersion": "0.1",

 "eventTypeVersion": "2.0",

 "source": "ObjectStorage",

 "eventTime": "2019-09-23T10:49:00.195Z",

 "contentType": "application/json",

 "data": {

 ...

 "resourceName": "customer_attendance.20190923.csv",

 ...

 },

 "eventID": "b163df45-de9c-9f01-2928-b0906cd8a3e4"

}

With this brief understanding of CloudEvents specification, we can move to the final

section of this chapter.

 Oracle Events
Selected services on Oracle Cloud can be configured to emit events. These events are

compliant with the open source CloudEvents specification. At the time of writing, we

are talking about version 0.1 of the specification. Oracle Events is used to connect the

emitted events with other Oracle Cloud services that perform actions when particular

events occur. For example, you could register a function that takes some action; as soon

as the launch of a new compute instance completes, a database backup is created, a

notification is received, or a new object is created in a particular bucket. You connect

event emitters with services that take actions by defining the appropriate OracleEvents

rules. A rule defines conditions and actions for the implemented event processing chain,

as illustrated in Figure 9-25.

Chapter 9 Cloud-Native arChiteCture

544

Coming back to our exercises, first of all, we have to allow the Oracle Events service

to call Oracle Functions so that we can trigger serverless functions defined in the Sandbox

compartment when an event of a particular type occurs. Listing 9-15 presents the only

IAM policy statement we need for that purpose.

Listing 9-15. cloudevents.policies.json

[

 "allow service cloudEvents to use functions-family in compartment

Sandbox"

]

Figure 9-25. Oracle Events

Chapter 9 Cloud-Native arChiteCture

545

Now, use oci iam policy create to get this statement added.

$ cd ~/git/oci-book/chapter09/4-events/policies

$ oci iam policy create --name cloudevents-policy --statements file://

cloudevents.policies.json --description "Functions-related policy for

CloudEvents" --profile SANDBOX-ADMIN

{

 "data": {

 ...

 "name": "cloudevents-policy",

 "description": "Functions-related policy for CloudEvents",

 "lifecycle-state": "ACTIVE",

 ...

 }

}

We are about to create an Oracle Events rule that combines a condition that defines

the kind of event to react to with an action. Listing 9-16 presents the condition we are

going to use.

Listing 9-16. oracleevents.conditions.json

{

 "eventType": ["com.oraclecloud.objectstorage.createobject"],

 "data": {

 "compartmentName": ["Sandbox"],

 "additionalDetails": {

 "bucketName": ["reports"]

 }

 }

}

To put it simply, when a new object is created in the reports bucket inside the Sandbox

compartment, the rule will perform the action defined, as shown in Listing 9-17.

Chapter 9 Cloud-Native arChiteCture

546

Listing 9-17. oracleevents.actions.template.json

{

 "actions": [

 {

 "actionType": "FAAS",

 "description": "string",

 "functionId": "PUT_HERE_FUNCTION_ID",

 "isEnabled": true

 }

]

}

We will reference these files in a moment. In the meantime, there is still one

important thing to be done. Some types of event emitters must be explicitly enabled.

This is the case for events related to object storage objects. We need to enable emitting

object events for the reports bucket. In the OCI Console, you can perform this task in

the following way:

 1. Go to Menu ➤ Object Storage ➤ Object Storage.

 2. Make sure that the Sandbox compartment is selected.

 3. Click the name of the reports bucket.

 4. Click Edit next to Emit Object Events.

 5. Check the Emit Object Events box, as shown in Figure 9-26.

 6. Click Save Changes.

Chapter 9 Cloud-Native arChiteCture

547

Figure 9-26. Enabling event generation for the object in a bucket

At this stage, we are ready to create a new Oracle Events rule that takes the

conditions and action files you saw a moment ago. As shown in the following code

snippet, you will serialize the contents of the conditions file and use the sed program to

create the JSON file that includes the final action. We do it to prepare the input to the oci

events rule create command. Be careful, the FN_FUN_OCID variable is still expected to

be set. This is the code to execute:

$ cd ~/git/oci-book/chapter09/4-events/events

$ echo $FN_FUN_OCID

ocid1.fnfunc.oc1.eu-frankfurt-1.aa...j3lfqa

$ cat oracleevents.actions.template.json | sed -e "s/PUT_HERE_FUNCTION_

ID/$FN_FUN_OCID/g" > oracleevents.actions.json

$ SERIALIZED_CONDITIONS=`cat oracleevents.conditions.json | sed 's/"/\\"/g'

| sed 's/[[:space:]]//g' | tr -d '\n'`

$ echo $SERIALIZED_CONDITIONS

{"eventType":["com.oraclecloud.objectstorage.createobject"],"data":{"compar

tmentName":["Sandbox"],"additionalDetails":{"bucketName":["reports"]}}}

$ oci events rule create --display-name new-reports --is-enabled true

--condition $SERIALIZED_CONDITIONS --actions file://oracleevents.actions.

json

The rule has been created. If you want, you can always go to the OCI Console to view

or optionally amend the Oracle Events rule, as shown in Figure 9-27.

Chapter 9 Cloud-Native arChiteCture

548

To test whether the events emitted by object storage really trigger the reportingfn

function deployed to Oracle Functions, put the two remaining test files in the reports

bucket. You can do it with the oci os object put command like this:

$ cd ~/git/oci-book/chapter09/4-events/reports

$ oci os object put -bn reports --file customer_attendance.20190923.raw.csv

--profile SANDBOX-USER

Uploading object [####################################] 100%

$ oci os object put -bn reports --file customer_attendance.20190924.raw.csv

--profile SANDBOX-USER

Uploading object [####################################] 100%

After a while, you should see two more files appear in the same bucket, this time with

the .processed.csv suffix, as shown in Figure 9-28.

Figure 9-27. Viewing Oracle Events rule in the OCI Console

Chapter 9 Cloud-Native arChiteCture

549

Figure 9-28. Viewing processed files in the OCI Console

Feel free to explore the contents of these files, compare .raw.csv to .processed.csv,

and see the Python code that was used to implement the function.

Tip if nothing happens and there are no .processed.csv files, you probably
skipped the step in which you enable emitting events on the bucket. delete the two
.raw.csv files, enable emitting events on the reports bucket, and reupload the
.raw.csv files.

 Cleanup
After having completed the exercises, you can terminate the cloud resources created in

this chapter. First, let’s remove the bucket with its contents.

$ oci os object bulk-delete -bn reports

There are 6 object in the bucket. Are you sure you want to delete them?

[y/N]: y

$ oci os bucket delete -bn reports

Are you sure you want to delete this resource? [y/N]: y

Chapter 9 Cloud-Native arChiteCture

550

To delete functions from Oracle Functions, you can use the OCI CLI, the OCI

Console, or the Fn client. This is how you do it with the CLI commands:

$ FN_APP_OCID=`oci fn application list --query "data[?\"display-name\" ==

'reportingapp'] | [0].id" --raw-output`

$ FN_FUN_OCID=`oci fn function list --application-id $FN_APP_OCID --query

"data[?\"display-name\" == 'reportingfn'] | [0].id" --raw-output`

$ oci fn function delete --function-id $FN_FUN_OCID

Are you sure you want to delete this resource? [y/N]: y

$ oci fn application delete --application-id $FN_APP_OCID

Are you sure you want to delete this resource? [y/N]: y

$ FN_APP_OCID=`oci fn application list --query "data[?\"display-name\" ==

'uuidcloudapp'] | [0].id" --raw-output`

$ FN_FUN_OCID=`oci fn function list --application-id $FN_APP_OCID --query

"data[?\"display-name\" == 'uuidfn'] | [0].id" --raw-output`

$ oci fn function delete --function-id $FN_FUN_OCID

Are you sure you want to delete this resource? [y/N]: y

$ oci fn application delete --application-id $FN_APP_OCID

Are you sure you want to delete this resource? [y/N]: y

To delete the Oracle Events rule, use the oci events rule delete CLI command

like this:

$ EVENTRULE_OCID=`oci events rule list --query "data[?\"display-name\" ==

'new-reports'] | [0].id" --raw-output`

$ oci events rule delete --rule-id $EVENTRULE_OCID

Are you sure you want to delete this resource? [y/N]: y

To terminate dev-vm and any related networking resources, you have to issue the

terraform destroy command in the infrastructure project directory like this:

$ source ~/tfvars.env.sh

$ cd ~/git

$ cd oci-book/chapter09/1-infrastructure

$ terraform destroy -auto-approve

Chapter 9 Cloud-Native arChiteCture

551

This is the last chapter of this book. In the course of the book, we created a number

of supplementary tenancy-level cloud resources such as users, groups, IAM policies,

dynamic groups, and the Sandbox compartment. These resources do not incur costs,

at least at the time of writing. Feel free to remove them, unless you want to use them

to explore further the Oracle Cloud Infrastructure features on your own. To find all the

cloud resources that exist at a given time in your tenancy or in a particular compartment,

you can use the Search function covered in Chapter 4 or the Compartment Explorer

available in the OCI Console under Menu ➤ Governance ➤ Compartment Explorer.

 Summary
Cloud-native architecture, even though still immature, is slowly becoming a reality. In

this chapter, you learned about the emerging CNCF ecosystem and its origins that are

based on open source, cloud computing, and containerization. Next, you got familiar with

the concepts of serverless functions and applied this knowledge with the open source,

container-based serverless framework called Fn Project. Then, you worked with Oracle

Functions, which is a managed platform on Oracle Cloud that allows you to execute

Fn Project functions. Going further, you understood how functions deployed to Oracle

Functions can interact with other Oracle Cloud services. As an example, you learned

how to read and write to object storage. Finally, you were introduced to the CNCF-hosted

CloudEvents project, which is working on defining an industry-wide event specification,

and saw how to leverage event-based function triggers by configuring Oracle Events rules.

This chapter concludes Practical Oracle Cloud Infrastructure. I am happy that I could

be your guide. Good luck in the future!

Chapter 9 Cloud-Native arChiteCture

553
© Michał Tomasz Jakóbczyk 2020
M. T. Jakóbczyk, Practical Oracle Cloud Infrastructure, https://doi.org/10.1007/978-1-4842-5506-3

Index

A
ACID properties, 351
ADW instance,

terminate, 408
ADW, load data

database credential
Auth Token, 369, 370
CLI command, 370
DBMS_CLOUD.COPY_DATA

procedure, 370
DBMS_CLOUD.DROP_

CREDENTIAL procedure, 371
roadadw-load, 372, 373
SANDBOX_USER, 370

DBMS_CLOUD.COPY_DATA
procedure, 368

Star schema (see Star schema)
American National Institute of

Standards and
Technology (NIST), 3

Ansible, 345
Application design

API response, 53
components sketch, 53
JSON format, 56
round robin policy, 53
service implementation, 55
UUID, 52
WSGI, 54

Application Programming
Interface (API), 10

REST, 11–14
SOAP, 10, 11

Architectural patterns, 279
AttachVnic API, 282
Auditing

event search, 223, 224
OCI Console, 222

Automatic Workload
Repository (AWR), 391

Autonomous Database (ADB), 35,
347–408

Autonomous Data Warehouse (ADW), 32
ADMIN, 358
backups, 362, 363
CLI command, 359, 360
database creation, 358
geographical region, 356
instances, OCI Console, 361, 362
OCI Console, 357
OLAP systems, 356
SANDBOX-ADMIN CLI, 358
schema, 363
Service Console, 360, 361

Autonomous Transaction
Processing (ATP), 32, 355

Autoscale, 92, 320
Availability domain (AD), 34, 41, 53

https://doi.org/10.1007/978-1-4842-5506-3

554

B
Bare metal (BM), 16
Bare Metal Cloud Service (BMCS), 33
Billings

BYOL, 40
commitment-based pricing, 39
OCI console, 40
pay-as-you-go pricing, 39

blankapp application, 505
blankfn function, 503
blankfn.py file, 503
Block storage, 19
Boot volumes, 37, 329
Bring your own license (BYOL), 40
Buckets, 19, 226, 228
Business Process Modelling Notation

(BPMN), 5

C
Capital expenses, 2
cat command, 497
Cleanup, 115
client.get_namespace

method, 251
client.list_objects method, 271
Cloud account, 50
Cloud computing, 1

characteristics, 4
cloud management plane, 14
costs

commitment, 31
discounted prices, 31
metrics, 30
pay-as-you-go pricing, 31
PAYG vs. commitment-based

plan, 32
definition, 3

delivering as a service, 9, 10
elasticity and scalability, 7
traditional provisioning process, 5, 6
virtual resources and

hardware, 2, 3
cloud-config file, 417
CloudEvents project

context attributes, 542
GitHub, 541

CloudEvents specification, 542
Cloud infrastructure

address layout, 57
architecture, 58
boot volume, 60
fault tolerance, 57
image, 60
IPv4 addresses, 56
load balancer, 56
OCPU, 59
operating systems, 60
shape, 58
subnets, 56

Cloud Infrastructure, automation
CLI

compute instance, 147
configuration, 139–144
defining, 137
installation, 138, 139
oci-cli module, 137
provisioning resources, 148
SSH public key, 146
VCN OCID, 145, 146

cloud platform (see Cloud
Management Plane)

SDK
configuration, 132–134
installation, 130, 131
OCID, 135, 136

Index

555

open source projects, 129
VCN, 135, 136

terraform, 149
cloud-init configuration, 503
Cloud Management Plane

API calls, securing, 122, 123
keypair, generate, 124, 125
multi-tenancy, 119
Oracle cloud infrastructure

API, 120, 122
public key, uploading, 126, 127
SDK/CLI/Terraform, 128

Cloud Native
definition, 489
landscape, 492

Cloud Native Computing Foundation
(CNCF), 415, 444, 489

ClusterIP service, 446
Cold backups, 20
Colocation model, 2
Command line interface (CLI), 49, 137
commit_multipart_upload

function, 252, 254
Common Internet File Service (CIFS), 21
Community Edition (CE), 418
Compartments, 25, 38, 50

access control policy, 182
deleting, 188
deriving compartment hierarchy, 183
details view, 185
filter costs, 182
hierarchical structure, 182
list, 184
OCI console, 184
reasons, 182
resources, 182
Sandbox, 186, 187
viewing costs per compartment, 189

Compute instances
bare metal machine vs. virtual

machines, 16
cloud-init, 80
creation, 80, 84
custom images, 17
hardware configuration profile, 17
management tab, 81
multiple tenants, 16
networking tab, 81
OCI console, 75, 85, 86
preinstalled software stack, 17
RSA algorithm, 76
sections, 79
SSH keypair creation, 76, 77
SSH public key, 83
VM, 16
vm.config.yaml, 77

Container image registries, 490
Containerized application

development instance, 416, 418–420
docker images, 422–425, 427, 428
docker runtime, 421, 422
running containers, 428, 430
scalability, 416

Container Network Interface (CNI), 488
Container orchestration

cluster, 449, 451, 452, 454, 455
deployment, 480–483
developer, 472
Kubernetes, 445
Pods, 477
sandbox-user, 470, 471
token and secret, 477–479

Containers
core characteristics of, 409, 410
definition, 409
developing applications, 414

Index

556

filesystem layers, 411
images, 411
isolated, 410
layers, 411
management, 440, 441
registry, 430
platform, 443
self-contained, 410
tags, 413
tenancy namespace, 436

Container Storage Interface (CSI), 488
COPY command, 425
Core cloud capabilities, 15

compute, 15–18
IAM, 24, 25
networking, 22–24
storage, 18–21

-c parameter, 433
create_multipart_upload function, 252
Create, read, update, and delete

(CRUD), 229
Cross-tenancy VCN peering, 307
Custom tag, 256

D
Data analytics

ad hoc queries, 403
dicing, 399, 402
drill-down operation, 401
GRANT statement, 396
Materialized Views, 397
OLAP Cube, 394, 395, 398, 399
OML, 404–406
Oracle Analytics Cloud, 406, 407
pivot operation, 404
queries, 394

query result, 398
slice and dice, 400
slice operation, 400
SQL select statement, 397
Star schema, 394, 395
view, 396

Database monitoring
activity view, 390, 391
AWR tables, 391, 392
Service Console, 390
SQL statements, 392, 393

Data Definition
Language (DDL), 379

Data entity, 347
Data model, 347
Deployment models

hybrid cloud, 26, 27
private cloud, 26
public cloud, 26

Development environments, 180
dev-sandbox namespace, 470, 476
dev-vm compute instance, 486
-d flag, 499
Dicing operation, 398
Disaster recovery (DR), 64
-d parameter, 428
Dynamic groups, 255

commands, 262
creation, 260, 261
matching rule, 260
oci iam policy, 262
sandbox compartment, 261
sandbox-users.policies.storage.2.json

file, 261
statements, 262, 263
--version-date argument, 263

Dynamic Routing Gateway
(DRG), 24, 307

Containers (cont.)

Index

557

E
Elasticity, 4
Enterprise Service Bus (ESB), 13
Entity tags (ETags), 242
ENV instructions, 425
-e parameters, 428
Event-based function calls, 529
Events

application integration patterns, 528
defined-tags, 537, 538
deploy, 536
freeform-tags, 537
groups and functions, 530
handler function, 534
IAM policy statement, 533
JSON format, 539
object_name function, 539
object-processing function, 532
reportingfn, 534
requirements.txt file, 534
test-projects.reports tag key, 532

Exadata database machine, 352
EXPOSE instruction, 425
Express Edition (XE), 352
extract_object_name function, 535
Extract-Transform-Load (ETL), 7

F
FastConnect, 23
Fault domains, 34
File storage, 21
Floating IP, 282
fn init command, 503
Fn Project, 497

blankapp application, 505
blankfn function, 504
blankfn.py file, 503

contexts, 500, 501
development and execution, 507
docker logs command, 499
fdk package, 503
function-specific containers, 506
install, 498
Python-based function, 502
UUID, 507, 508, 510–512

Free-text queries, 214
JMESPath, 215, 216
OCI Console, 215

FROM instruction, 425
Function as a service (FaaS), 493
Function deployment, 501
func.yaml function, 502

G
Gartner, 4
Groups, 198

members, 201
OCI CLI configuration file, 202
OCI CLI RC file, 202
OCI Console, 199
TENANCY_OCID bash variable, 199
user details screen, 200, 201

H
HashiCorp Language (HCL), 150
High-performance computing

(HPC), 16, 35
Horizontal scaling, 8, 308

autoscaling policy, 317, 318, 320, 321
CPU Utilization, 318, 322
instance pool

CentOS image, 309
cloud-config file, 314

Index

558

cooldown period, 321
CPU utilization, 313, 320, 323
infrastructure, 309, 310
instance configuration, 309, 315
load balancers, 325
modules.tf file, 316
OCI Console, 311, 312
oci_core_instance_configuration, 315
resource, 316
scaled out, 321, 322
SSH key, 310
workers-pool, 311, 312

memory utilization, 323
Terraform, 324

HTTP-based serverless function, 493

I
identifiers() handler function, 55
Identity and Access Management

(IAM), 64, 193, 430
cloud users, 24
dynamic groups, 25

Identity Cloud Service (IDCS), 189
Identity provider (IdP), 24
Image registry, 412, 413
Immutable infrastructure, 343

Ansible, 345
autonomous intelligence, 344
cloud-init, 344
multiple sets, 344
stages, pipelines, 345
Terraform provisioners, 344

Indexes, 350
Information age, 1
Infrastructure-agnostic platform, 443
Infrastructure as a service (IaaS), 1, 27

Input/output operations per second
(IOPS), 20

Instance configuration, 18, 308
Instance pool, 309
Instance principals, 25
Internet Gateway (IGW), 37, 68, 284
Internet Small Computer Systems

Interface (iSCSI) protocol, 20

J
JavaScript Object

Notation (JSON), 12

K
kernel-level isolation, 412
Kernel Version entry, 421
Kubeconfig files, 464, 465, 475
Cluster DNS pods (kube-dns-), 469
Container Networking Interface plugin

pods (kube-flannel-), 469
Kubernetes Network Proxy

(kube-proxy-), 469
Kubernetes

infrastructure, 448
objects, 447

Kubernetes Service Load Balancer, 484

L
Linux containers tool (LXC), 415
Load balancer (LB), 23, 485

add details, 109
backend step, 108, 110
fault-tolerant, 103
health check settings, 111
ingress security rules, 104, 105

Horizontal scaling (cont.)

Index

559

JSON element, 114
listener step, 109
OCI resources, 107
REST APIs, 112
security list, 103
subnets, 106
troubleshoot, 113
VCN, 107

LoadBalancer-type Kubernetes
Services, 460

load_object_content function, 535
--local option, 504
Local peering gateways (LPG), 304, 305

M
Management permissions, 181
Microservices, 409
Multi-part upload mechanism, 246

N
Namespace, 227, 228
Network File System 4 (NFS4), 21
--no-bump parameter, 524
Node pools, 36, 38
Nonvolatile Memory Express

(NVMe), 20
-n parameter, 476

O
Objects, 225, 226, 228

API, 229
authenticated groups, 228
binary file, bash, 233
bucket details, 231
CLI profile, 229

concurrent updates
error, 245
ETags, 242
HeadObject API, 245
--if-match option, 245
lost update, 241, 242
oci os object, 245
optimistic concurrency

control, 243, 244
race conditions, 241

CRUD, 229
custom metadata, 239–241
IAM policy statement, 223, 228
listing, 238, 239
-ns option, 234
object name prefixes

bulk commands, 235
file groups, 234, 235
filtering, 237, 238
--include option, 236
oci os object list, 237
prefixing, 236
upload blueprints, 235

oci os object put
command, 233

sandbox-admins group, 228
SANDBOX-USER profile, 233
sandbox-users.policies.storage.json,

231, 232
storage tiers, 230
table, 231

Object storage, 225
ObjectStorageClient class, 246
OCI CLI command, 147
oci.config.from_file method, 251
OCI Console

accessing user profile, 435
function invocations, 526

Index

560

function-specific container
image, 525, 537

OCIR, 432
OKE cluster, 455, 458
processed files, 549
raw data object, 540
viewing functions, 523, 526
viewing processed data, 541

OCI infrastructure components, 463
oci.object_storage.ObjectStorageClient

class, 251
OCI Registry (OCIR), 477image

tags, 431
OCI console, 432
policy, 434
region codes, 431

OCI REST API, 136
OCIR repository

image, 439
view, 439

OKE cluster, 463
OLAP cubes, 394, 395
OLAP workloads, 355
OLTP workloads, 354
Open Container Initiative (OCI), 422
Oracle Analytics Cloud, 406, 407
Oracle Cloud Identifier (OCID), 65
Oracle Cloud Infrastructure (OCI), 1, 14, 62

billing, 39–41
IaaS, 32
regions, 33, 34
services, 36–39
SLA (see Service-level

agreements (SLAs))
supports, 41, 42
trial, 45–47
workloads, 35, 36

Oracle Cloud Infrastructure Registry
(OCIR), 430

Oracle Compute Unit (OCPU), 59
Oracle Container Image Registry (OCIR),

409, 432, 514, 518, 523
Oracle database

ADB, 353, 354
ADW, 355
defined, 351
exadata rack(s), 352
OLAP workloads, 355
OLTP workloads, 354
serverless, 354
XE, 352

Oracle Event, 544
action, 545
enable emitting object

events, 546, 547
rule in OCI Console, 548

Oracle Functions, 513
Access Management, 515
client context, 517
client properly, 518
endpoint, 513
events, 513
fn client configuration, 520
OCI CLI configuration, 519
policy statements, 515–517
sandbox/uuid repository, 525
tenancy namespace, 518
test the connectivity, 521
triggers, 513
VCN subnet, 514

Oracle Kubernetes Engine (OKE), 409,
449, 492

Oracle Machine Learning (OML), 404, 405
Oracle REST Database Services

(ORDS), 366

OCI Console (cont.)

Index

561

P, Q
Pagination, 220–222
Paging mechanism, 238
ping command, 299
Platform as a service (PaaS), 1, 28
Policies, 25, 207

compartments, 212
JSON file, 210
OCI console, 208
SANDBOX-ADMIN user, 210
sandbox-admins-policy, 212
Sandbox compartment, 209
Tenant Admin, 208

Policy statement, 203
IAM, 203
LOAD_BALANCER_DELETE

permission, 206
load balancers, 205
multiple permissions/operations, 207
policy verb, 204
resource types, 203

-p parameter, 428
Pre-authenticated requests, 37
Preboot Execution

Environment (PXE), 7
prepare_report_entries function, 271
Private IPs

primary and secondary, 283
secondary, 282
VCNs, 281, 282

Private subnets
API call(s), 298
bastion host, 289–292
bastion module, 296
CentOS-based instance, 291
isolated workloads, 289, 290
NAT gateway, 289–292, 295

OCI Console, 293, 294, 299
OCID, 296, 297
Public DNS servers, 294
remote management, 290
route rule, 295, 296
route table, 297
terraform apply command, 292
vcn.tf file, 295, 297, 298

process_city_attendance
function, 535

.processed.csv suffix, 548
Production environment, 180
Programming object storage

instance principles, 255, 263
application logic, 263
cloud-config file, 268–270
complex conditions, 256
custom tag, 256
dynamic group, 255
--file-option, 268
infrastructure, 264, 266
matching rule, 255
prepare_report_entries

function, 271
public IP, 266
report, 266, 267
reportissuer.py, 270
runcmd section, 269
service-specific metrics, 273
summary object, 267, 268
terraform destroy command, 272
tfvars.env.sh, 264
unit file, 269
upload _report function, 272
view, storage metrics, 273, 274

multi-part upload, 246, 247
AbortMultipartUpload, 248
application execution, 249

Index

562

commit_multipart_upload
function, 254

CommitMultipartUpload, 247
create_multipart_upload

function, 252, 253
diff tool, 250
ETag, 247
ListMultipartUploads, 248
main function, 250
part_details_list, 252
--part-size argument, 254
phases, 246
pip freeze command, 248
SDK installation, 248
spliting, 249
split_large_file

function, 250, 251
test file, 248
upload_part function, 253
upload_to_oci

function, 250–252
tagging resources

code, 257
cost tracking tags, 258
oci iam tag list, 259
oci iam tag-namespace, 257
tag keys, 256–259
tag namespace, 256–258
tags, 256
test-projects, 257

Project, 179
--provider option, 518
Provisioning infrastructure

compartment, 64
OCI console, 65
OCID, 66

DR, 64

OCI console, 63
single-AD regions, 64

Public access
access modes, 275
access types, 275
ObjectReadWithoutList, 275
OCI Console, 277
pre-authenticated

request, 275, 276
public buckets, 275
--time-expires option, 276
URL, 277

Public IPs
CLI command, 286, 287
ephemeral, 284
IGW, 284
JMESPath filter, 288
load balancer, 288
OCI console, 285
on-premise network, 283
Oracle Cloud address pool, 284, 285
reasons, 284
reserved, OCI Console, 287
subnet, 284
terminate reserved resource, 287

put_city_attendance_data function, 535
Python Package Index (PyPI)

repository, 131

R
Rapid provisioning, 4, 6, 9
Rapid self-provisioning process, 6, 7
Referential integrity, 348, 380, 388
Relational data model

ACID, 351
B-tree indexes, 350
check constraints, 349

Programming object storage (cont.)

Index

563

one-to-many
relationship, 349, 350

storing data, 349
transaction, 351
two-dimensional tables, 347, 348
unique key, 348

Remote Desktop (RDP), 16
Remote procedure calls (RPC), 13
reportingfn function, 539
reportingfn.py code, 534
Representational State Transfer (REST)

key abstraction, 11
RPC, 13

Route rules, 23
Route table, 69, 70

S
Sandbox-admins group

members, 433
sandbox-admin.tfvars file, 486
Scalability, 8
Scaling down, 308
Scaling in, 308
Scaling instance vertically, 326

boot volume, 329, 330
cloud-config file, 327
CPU utilization, 328, 330, 341, 342
detach, boot volume, 335–337
display name, boot volume, 343
infrastructure code, 338, 339
new instance, 341
OCI Console,

boot volume, 336, 337
source_details, 332
steps, 333
terminated, boot volume, 343
Terraform, 331, 339

terraform destroy command, 334, 343
uncomment code, 333

Scaling out, 92
autoscale, 92
compute instance, 96

advanced networking, 97, 100
choosing custom image, 97
creation, 99
viewing, 101

custom image, 92–95
horizontal, 92
reasons, 92
subnet, 95, 96

UUID Service API, 102
Vistula API, 102

Scaling up, 308
Searching

JMESPath-powered filter, 213
types, 214

Security list, 23, 70
egress security rule, 72
stateless rule, 71

Security rules
deny all principle, 300
security list, 301, 302
stateful rules, 300, 303
stateless and stateful, 300, 301
stateless rules, 300, 303

Self-service, 10
Serverless functions, 494

cloud-based instance, 496
devmachine module, 495
Docker commands, 497
Fn Project, 497 (see Fn Project)
function development, 496
stateless/short-lasting, 493

Server Message Block (SMB) protocol, 21
Service consumers, 10

Index

564

Service-level agreements (SLAs)
AD, 45
cloud, 44
credit levels, 44
PAYG, 44
service credits, 43

Service limits, 61, 62
Service mesh, 491
Service model

consumption patterns, 30
IaaS, 27
PaaS, 28
SaaS, 28

Service-Oriented Architecture
(SOA), 13, 441

Shared pool, 4, 9
Sidecar pattern, 442
Simple Object Access Protocol

(SOAP), 10, 11
Single-sign on (SSO), 190
Small Computer System Interface

(SCSI), 20
Snapshots, 20
Software as a service (SaaS), 13, 27–29, 353
Software-defined networking (SDN), 22
Software Development Kits

(SDKs), 14, 129
Solid state drive (SSD), 20
split_large_file function, 250
SQL Developer web

dwrole database, 366
ORDS_ADMIN.ENABLE_SCHEMA

procedure, 366
SANDBOX_USER, 367, 368
SQL statements, 365
SQL tasks, 364
URL structure, 366, 367

SQL select statement, 349

ssh-agent, 294
SSH ProxyJump technique, 294
Standardization, 488
Star schema

defined, 373
dimension

blankasnull, 382
data files, 375
DBMS_CLOUD.COPY_DATA

procedure, 380
DDL statement, 379
event, 378
object details, 379
object storage, 376
rejectlimit, 380
road, 382, 383
road, 377, 378
sandbox-user, 376
SQL DDL statement, 381
SQL Developer Web, 380, 381
time, 377, 383, 385
TIME_DIM database, 383, 384

fact
data files, 385
join operations, 388
Object Storage bucket, 386, 387
road event, 386
SQL DDL statement, 387
SQL Developer Web, 389

fact table, 373, 374
Stateful rule, 71, 72, 113, 300, 301, 303, 306
Stateless rule, 72, 300, 301, 303
Storage capability, 18

access frequency, 19
block storage, 19
iSCSI protocol, 20
NFS protocol, 21
resource types, 18

Index

565

Storage Driver, 422
Structured queries, 217

OCI Console, 217
sandbox, 219

Structured Query Language
(SQL), 349

Subnets, 73
Sun Network Filesystem (NFS), 21

T
Tags, 50
Terraform, 298, 324, 327

CLI, 177
configuration

project directory, 153, 156
variables, 154

defining, 149
infrastructure code, 149–151

attributes, 169
cloud-init tool, 174
data sources, 167, 169
modules, 167, 168
project, 166
resources, 166
route table, 172
security list, 172
subnet, 172
web module directory, 170, 172
Internet gateway (web_igw)

references, 166
web module, 172, 173

installation, 152
providers, 149
provisioning

actions, 160
cleanup and terminate

infrastructure, 164, 165

dependency tree, 162
environment variables, 157
files, 158
modules, 159
web-vm compute instance, 163

single server infrastructure, 157
state file, 175, 177

Terraform-powered
infrastructure, 450

Testing
API, 89–91
cloud-init, 87–89
LB (see Load balancer (LB))
open ports, 89
SSH connection, 86, 87

-t parameter, 426

U
Universal Unique Identifier

(UUID), 52
upload_part function, 251–253
upload_report function, 271, 272
upload_to_oci function, 250–253
Users

active user menu, 193
CLI configuration file, 196, 197
insufficient access, 194
non-federated user, 191, 192
SANDBOX-ADMIN profile, 197
Sign-in screen, 190
TENANCY_OCID bash variable, 195
types, 189

UUID generation function, 507
deployment model, 508, 510
fn inspect function, 511, 512
fn invoke command, 510

uuid.uuid4()method, 509

Index

566

V
VCN peering

cross-tenancy, 307
dedicated networking

compartment, 306, 307
local, 304
LPG, 304, 305
point-to-point, 306
remote, 307
route rules, 305

--verbose option, 504
Vertical scaling, 8, 20, 308
Virtual cloud network (VCN), 15, 22, 35,

56, 66–67, 135, 145
AD-specific subnets, 280
subnet types, 280

Virtual hardware resources, 2

Virtual machines (VM), 2, 8, 14, 16, 27, 28,
36, 39, 41, 44, 58, 59, 118, 410, 412

Virtual networking, 22, 117, 279–280

W, X
Warm backup, 20
Web Application Description Language

(WADL), 12
Web Application Firewall (WAF), 22, 24, 38
Web Services Description Language

(WSDL), 10
WORKDIR instruction, 425

Y, Z
your pay as you go (PAYG), 44

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introducing Oracle Cloud Infrastructure
	Cloud Computing Characteristics
	Hardware and Virtual Resources
	Cloud Computing Definitions
	Provisioning
	Traditional Provisioning Process
	Rapid Self-Provisioning Process

	Elasticity and Scalability
	Delivery as a Service
	APIs
	SOAP APIs
	REST APIs
	Cloud Management Plane

	Core Cloud Capabilities
	Compute
	Storage
	Networking
	Identity and Access Management

	Deployment Models
	Service Models
	Costs
	Oracle Cloud Infrastructure
	Regions
	Workloads
	Services
	Billings
	Support
	SLA
	Trial

	Summary
	Notes

	Chapter 2: Building Your First Cloud Application
	Planning the Infrastructure
	Cloud Account
	Project Compartment
	Application Design
	Cloud Infrastructure
	Service Limits

	Provisioning the Infrastructure
	Compartment
	Virtual Cloud Network
	Internet Gateway
	Route Table
	Security List
	Subnet
	Compute Instance

	Testing the Application
	SSH Connection
	Waiting for cloud-init
	Open Ports
	API Test

	Scaling Out
	Custom Image
	Subnet in a Different AD
	Second Compute Instance
	Load Balancer

	Cleanup
	Summary

	Chapter 3: Automating Cloud Infrastructure
	Cloud Management Plane
	Oracle Cloud Infrastructure API
	Securing API Calls
	API Signing Key
	Generate a Keypair
	Uploading the Public Key
	Preparing for SDK, CLI, and Terraform

	SDK
	Installation
	Configuration
	Using the SDK

	CLI
	Installation
	Configuration
	Using the CLI

	Terraform
	Infrastructure as Code
	Installation
	Configuration
	Using Terraform
	Provisioning
	Infrastructure Code

	State

	Best Practices
	Summary

	Chapter 4: Cloud Security and Project Environments
	Projects, Environments, and Systems
	Compartments
	Users
	Groups and Policies
	Groups
	Policy Statements
	Policies

	Audit and Search
	Searching
	Free-Text Search
	Structured Queries
	Pagination

	Auditing

	Summary

	Chapter 5: Data Storage in the Oracle Cloud
	Buckets and Objects
	Working with Objects
	Basics
	Object Name Prefixes
	Listing Objects in Pages
	Object Metadata
	Concurrent Updates

	Programming Object Storage
	Multipart Uploads
	Instance Principals
	Tagging Resources
	Dynamic Groups
	Accessing Storage from Instances

	Public Access
	Cleanup
	Summary

	Chapter 6: Patterns for Compute and Networking
	Virtual Networking
	Private IPs
	Public IPs
	Private Subnets, Bastion, and NAT
	Security Rules
	VCN Peering

	Scaling Instances
	Instance Pools and Autoscale
	Scaling Instance Vertically Up

	Immutable Infrastructure
	Summary

	Chapter 7: Autonomous Database
	Relational Data Model
	Oracle Database
	Autonomous Data Warehouse
	SQL Developer Web
	Loading Data to ADW
	Database Credential
	Star Schema
	Dimensions
	Facts

	Database Monitoring
	Data Analytics
	Cleanup
	Summary

	Chapter 8: Oracle Container Engine for Kubernetes
	Containers
	Containerize an Application
	Development Instance in the Cloud
	Docker Runtime
	Docker Images
	Running Containers

	Container Registry
	Container Management

	Container Orchestration
	Kubernetes
	Managed Cluster
	Connecting As Superuser
	Sandbox Namespace
	Connecting As Developer
	Pods
	Deployments and Services

	Cleanup
	Summary

	Chapter 9: Cloud-Native Architecture
	Cloud Native
	Serverless
	Developer VM
	Fn Project
	Installation and Configuration
	Your First Function
	UUID Function

	Oracle Functions
	OCI Networking and Policies
	Client Setup
	Deploying the UUID Function

	Events
	Functions and Object Storage
	Preparing Infrastructure
	Deploying Function

	Events As Function Triggers
	CloudEvents
	Oracle Events

	Cleanup
	Summary

	Index

